يعرض 1 - 10 نتائج من 25 نتيجة بحث عن '"Zhao, Heqian"', وقت الاستعلام: 0.93s تنقيح النتائج
  1. 1
    دورية أكاديمية
  2. 2
    دورية أكاديمية
  3. 3
    دورية أكاديمية
  4. 4
    دورية أكاديمية
  5. 5
    دورية أكاديمية
  6. 6
    دورية أكاديمية

    المؤلفون: Zhao, Heqian1 (AUTHOR) 2017312014@student.cup.edu.cn, Shi, Huaizhong1 (AUTHOR) shz@cup.edu.cn, Huang, Zhongwei1 (AUTHOR), Chen, Zhenliang1 (AUTHOR), Gu, Ziang1 (AUTHOR), Gao, Fei1 (AUTHOR)

    المصدر: Energies (19961073). May2022, Vol. 15 Issue 9, pN.PAG-N.PAG. 21p.

    مستخلص: Vibration drilling technology induced by hydraulic pulse can assist the bit in breaking rock at deep formation. Simultaneously, the pulsed jet generated by the hydraulic pulse promotes removal of the cuttings from the bottom hole. Nowadays, the cuttings removal mechanism of the pulsed jet is not clear, which causes cuttings to accumulate at the bottom hole and increases the risk of repeated cutting. In this paper, a pressure-flow rate fluctuation model is established to analyze the fluctuation characteristics of the pulsed jet at the bottom hole. Based on the model, the effects of displacement, well depth, drilling fluid viscosity, and flow area of the pulsed jet tool on the feature of instantaneous flow at the bottom hole are discussed. The results show that the pulsed jet causes flow rate and pressure to fluctuate at the bottom hole. When the displacement changes from 20 L/s to 40 L/s in a 2000 m well, the pulsed jet generates a flow rate fluctuation of 4–9 L/s and pressure fluctuation of 0.1–0.5 MPa at the bottom hole. With the flow area of the tool increasing from 2 cm2 to 4 cm2, the amplitude of flow rate fluctuation decreases by 72.5%, and the amplitude of pressure fluctuation decreases by more than 60%. Combined with the fluctuation feature of the flow field and the water jet attenuation law at the bottom hole, the force acting on the cuttings under the pulsed jet is derived. It is found that flow rate fluctuation improves the mechanical state of cuttings and is beneficial for cuttings tumbled off the bottom hole. This research provides theoretical guidance for pulsed jet cuttings cleaning at the bottom hole. [ABSTRACT FROM AUTHOR]

  7. 7
    دورية أكاديمية
  8. 8
    دورية أكاديمية
  9. 9
    دورية أكاديمية
  10. 10

    المصدر: Journal of Energy Resources Technology. 141

    الوصف: With the development of petroleum industry, it needs an efficient drill method such as under balanced drilling (UBD) to enhance the rate of penetration (ROP). However, borehole instability is a problem that UBD must face. The coiled tubing partial underbalanced drilling (CT-PUBD) is proposed to try to solve this problem while keeping an underbalanced condition with high ROP. This paper analyzes the laws of cuttings transport in the narrow annulus focus on this new technique through the simulations and experiments. From the results of simulations, it obtains that the particle velocity declines with the increase of rotational speed and increases with the increase of flow rate. The particles become concentrated as the flow rate increases, and the high flow rate limits particles in a small area. The particle distribution undergoes a process of concentration, dispersion, and concentration as the rotational speed increases. The high rotational speed makes particles deviate from the high fluid velocity area, which causes low particle velocity. The relationships between particle velocity and rotational speed and between particle velocity and flow rate are fitted through the equations, respectively. The phenomenon of collision of particles, sinking and rising of particles, and variation of particle velocity are observed in the experiments. The error between the particle velocity in the experiment and numerical simulation is less than 8.5%. This paper is an exploratory study conducted for the cuttings transport in narrow annulus.