يعرض 1 - 10 نتائج من 28 نتيجة بحث عن '"Windus T. L."', وقت الاستعلام: 0.94s تنقيح النتائج
  1. 1
    تقرير

    المؤلفون: Aprà, E., Bylaska, E. J., de Jong, W. A., Govind, N., Kowalski, K., Straatsma, T. P., Valiev, M., van Dam, H. J. J., Alexeev, Y., Anchell, J., Anisimov, V., Aquino, F. W., Atta-Fynn, R., Autschbach, J., Bauman, N. P., Becca, J. C., Bernholdt, D. E., Bhaskaran-Nair, K., Bogatko, S., Borowski, P., Boschen, J., Brabec, J., Bruner, A., Cauët, E., Chen, Y., Chuev, G. N., Cramer, C. J., Daily, J., Deegan, M. J. O., Dunning Jr., T. H., Dupuis, M., Dyall, K. G., Fann, G. I., Fischer, S. A., Fonari, A., Früuchtl, H., Gagliardi, L., Garza, J., Gawande, N., Ghosh, S., Glaesemann, K., Götz, A. W., Hammond, J., Helms, V., Hermes, E. D., Hirao, K., Hirata, S., Jacquelin, M., Jensen, L., Johnson, B. G., Jónsson, H., Kendall, R. A., Klemm, M., Kobayashi, R., Konkov, V., Krishnamoorthy, S., Krishnan, M., Lin, Z., Lins, R. D., Littlefield, R. J., Logsdail, A. J., Lopata, K., Ma, W., Marenich, A. V., del Campo, J. Martin, Mejia-Rodriguez, D., Moore, J. E., Mullin, J. M., Nakajima, T., Nascimento, D. R., Nichols, J. A., Nichols, P. J., Nieplocha, J., de la Roza, A. Otero, Palmer, B., Panyala, A., Pirojsirikul, T., Peng, B., Peverati, R., Pittner, J., Pollack, L., Richard, R. M., Sadayappan, P., Schatz, G. C., Shelton, W. A., Silverstein, D. W., Smith, D. M. A., Soares, T. A., Song, D., Swart, M., Taylor, H. L., Thomas, G. S., Tipparaju, V., Truhlar, D. G., Tsemekhman, K., Van Voorhis, T., Vázquez-Mayagoitia, Á., Verma, P., Villa, O., Vishnu, A., Vogiatzis, K. D., Wang, D., Weare, J. H., Williamson, M. J., Windus, T. L., Woliński, K., Wong, A. T., Wu, Q., Yang, C., Yu, Q., Zacharias, M., Zhang, Z., Zhao, Y., Harrison, R. J.

    المصدر: J. Chem. Phys., 152, 184102 (2020)

    الوصف: Specialized computational chemistry packages have permanently reshaped the landscape of chemical and materials science by providing tools to support and guide experimental efforts and for the prediction of atomistic and electronic properties. In this regard, electronic structure packages have played a special role by using first-principledriven methodologies to model complex chemical and materials processes. Over the last few decades, the rapid development of computing technologies and the tremendous increase in computational power have offered a unique chance to study complex transformations using sophisticated and predictive many-body techniques that describe correlated behavior of electrons in molecular and condensed phase systems at different levels of theory. In enabling these simulations, novel parallel algorithms have been able to take advantage of computational resources to address the polynomial scaling of electronic structure methods. In this paper, we briefly review the NWChem computational chemistry suite, including its history, design principles, parallel tools, current capabilities, outreach and outlook.
    Comment: This article appeared in volume 152, issue 18, page 184102 of the Journal of Chemical Physics. It can be found at https://doi.org/10.1063/5.0004997Test

    الوصول الحر: http://arxiv.org/abs/2004.12023Test

  2. 2
    دورية أكاديمية

    المساهمون: Gavini, V., Baroni, S., Blum, V., Bowler, D. R., Buccheri, A., Chelikowsky, J. R., Das, S., Dawson, W., Delugas, P., Dogan, M., Draxl, C., Galli, G., Genovese, L., Giannozzi, P., Giantomassi, M., Gonze, X., Govoni, M., Gygi, F., Gulans, A., Herbert, J. M., Kokott, S., Kuhne, T. D., Liou, K. -H., Miyazaki, T., Motamarri, P., Nakata, A., Pask, J. E., Plessl, C., Ratcliff, L. E., Richard, R. M., Rossi, M., Schade, R., Scheffler, M., Schutt, O., Suryanarayana, P., Torrent, M., Truflandier, L., Windus, T. L., Xu, Q., Yu, V. W., Perez, D.

    الوصف: Electronic structure calculations have been instrumental in providing many important insights into a range of physical and chemical properties of various molecular and solid-state systems. Their importance to various fields, including materials science, chemical sciences, computational chemistry, and device physics, is underscored by the large fraction of available public supercomputing resources devoted to these calculations. As we enter the exascale era, exciting new opportunities to increase simulation numbers, sizes, and accuracies present themselves. In order to realize these promises, the community of electronic structure software developers will however first have to tackle a number of challenges pertaining to the efficient use of new architectures that will rely heavily on massive parallelism and hardware accelerators. This roadmap provides a broad overview of the state-of-the-art in electronic structure calculations and of the various new directions being pursued by the community. It covers 14 electronic structure codes, presenting their current status, their development priorities over the next five years, and their plans towards tackling the challenges and leveraging the opportunities presented by the advent of exascale computing.

    العلاقة: volume:31; issue:6; firstpage:063301; journal:MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING; https://hdl.handle.net/11390/1256724Test; info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85167870692

  3. 3
    دورية أكاديمية

    المؤلفون: Aprà, E., Bylaska, E. J., de Jong, W. A., Govind, N., Kowalski, K., Straatsma, T. P., Valiev, M., van Dam, H. J. J., Alexeev, Y., Anchell, J., Anisimov, V., Aquino, F. W., Atta-Fynn, R., Autschbach, J., Bauman, N. P., Becca, J. C., Bernholdt, D. E., Bhaskaran-Nair, K., Bogatko, S., Borowski, P., Boschen, J., Brabec, J., Bruner, A., Cauët, E., Chen, Y., Chuev, G. N., Cramer, C. J., Daily, J., Deegan, M. J. O., Dunning, T. H., Dupuis, M., Dyall, K. G., Fann, G. I., Fischer, S. A., Fonari, A., Früchtl, H., Gagliardi, L., Garza, J., Gawande, N., Ghosh, S., Glaesemann, K., Götz, A. W., Hammond, J., Helms, V., Hermes, E. D., Hirao, K., Hirata, S., Jacquelin, M., Jensen, L., Johnson, B. G., Jónsson, H., Kendall, R. A., Klemm, M., Kobayashi, R., Konkov, V., Krishnamoorthy, S., Krishnan, M., Lin, Z., Lins, R. D., Littlefield, R. J., Logsdail, A. J., Lopata, K., Ma, W., Marenich, A. V., Martin del Campo, J., Mejia-Rodriguez, D., Moore, J. E., Mullin, J. M., Nakajima, T., Nascimento, D. R., Nichols, J. A., Nichols, P. J., Nieplocha, J., Otero-de-la-Roza, A., Palmer, B., Panyala, A., Pirojsirikul, T., Peng, B., Peverati, R., Pittner, J., Pollack, L., Richard, R. M., Sadayappan, P., Schatz, G. C., Shelton, W. A., Silverstein, D. W., Smith, D. M. A., Soares, T. A., Song, D., Swart, M., Taylor, H. L., Thomas, G. S., Tipparaju, V., Truhlar, D. G., Tsemekhman, K., Van Voorhis, T., Vázquez-Mayagoitia, Á., Verma, P., Villa, O., Vishnu, A., Vogiatzis, K. D., Wang, D., Weare, J. H., Williamson, M. J., Windus, T. L., Woliński, K., Wong, A. T., Wu, Q., Yang, C., Yu, Q., Zacharias, M., Zhang, Z., Zhao, Y., Harrison, R. J.

    المساهمون: University of St Andrews. School of Chemistry, University of St Andrews. EaSTCHEM

    مصطلحات موضوعية: QD Chemistry, NDAS, QD

    الوصف: Specialized computational chemistry packages have permanently reshaped the landscape of chemical and materials science by providing tools to support and guide experimental efforts and for the prediction of atomistic and electronic properties. In this regard, electronic structure packages have played a special role by using first-principle-driven methodologies to model complex chemical and materials processes. Over the past few decades, the rapid development of computing technologies and the tremendous increase in computational power have offered a unique chance to study complex transformations using sophisticated and predictive many-body techniques that describe correlated behavior of electrons in molecular and condensed phase systems at different levels of theory. In enabling these simulations, novel parallel algorithms have been able to take advantage of computational resources to address the polynomial scaling of electronic structure methods. In this paper, we briefly review the NWChem computational chemistry suite, including its history, design principles, parallel tools, current capabilities, outreach, and outlook. ; Peer reviewed

    وصف الملف: application/pdf

    العلاقة: Journal of Chemical Physics; 268276008; 4abfe4c5-f078-47e2-abdc-7b2eea7a45d9; 85084785862; 000533417100002; Aprà , E , Bylaska , E J , de Jong , W A , Govind , N , Kowalski , K , Straatsma , T P , Valiev , M , van Dam , H J J , Alexeev , Y , Anchell , J , Anisimov , V , Aquino , F W , Atta-Fynn , R , Autschbach , J , Bauman , N P , Becca , J C , Bernholdt , D E , Bhaskaran-Nair , K , Bogatko , S , Borowski , P , Boschen , J , Brabec , J , Bruner , A , Cauët , E , Chen , Y , Chuev , G N , Cramer , C J , Daily , J , Deegan , M J O , Dunning , T H , Dupuis , M , Dyall , K G , Fann , G I , Fischer , S A , Fonari , A , Früchtl , H , Gagliardi , L , Garza , J , Gawande , N , Ghosh , S , Glaesemann , K , Götz , A W , Hammond , J , Helms , V , Hermes , E D , Hirao , K , Hirata , S , Jacquelin , M , Jensen , L , Johnson , B G , Jónsson , H , Kendall , R A , Klemm , M , Kobayashi , R , Konkov , V , Krishnamoorthy , S , Krishnan , M , Lin , Z , Lins , R D , Littlefield , R J , Logsdail , A J , Lopata , K , Ma , W , Marenich , A V , Martin del Campo , J , Mejia-Rodriguez , D , Moore , J E , Mullin , J M , Nakajima , T , Nascimento , D R , Nichols , J A , Nichols , P J , Nieplocha , J , Otero-de-la-Roza , A , Palmer , B , Panyala , A , Pirojsirikul , T , Peng , B , Peverati , R , Pittner , J , Pollack , L , Richard , R M , Sadayappan , P , Schatz , G C , Shelton , W A , Silverstein , D W , Smith , D M A , Soares , T A , Song , D , Swart , M , Taylor , H L , Thomas , G S , Tipparaju , V , Truhlar , D G , Tsemekhman , K , Van Voorhis , T , Vázquez-Mayagoitia , Á , Verma , P , Villa , O , Vishnu , A , Vogiatzis , K D , Wang , D , Weare , J H , Williamson , M J , Windus , T L , Woliński , K , Wong , A T , Wu , Q , Yang , C , Yu , Q , Zacharias , M , Zhang , Z , Zhao , Y & Harrison , R J 2020 , ' NWChem : past, present, and future ' , Journal of Chemical Physics , vol. 152 , no. 18 , 184102 . https://doi.org/10.1063/5.0004997Test; RIS: urn:D1B84C8551B41C3E6ACEEC5B0F6769FE; ORCID: /0000-0001-6647-4266/work/75248553; https://hdl.handle.net/10023/23151Test

  4. 4

    المؤلفون: Aprà, E., Bylaska, E. J., de Jong, W. A., Govind, N., Kowalski, K., Straatsma, T. P., Valiev, M., van Dam, H. J.J., Alexeev, Y., Anchell, J., Anisimov, V., Aquino, F. W., Atta-Fynn, R., Autschbach, J., Bauman, N. P., Becca, J. C., Bernholdt, D. E., Bhaskaran-Nair, K., Bogatko, S., Borowski, P., Boschen, J., Brabec, J., Bruner, A., Cauët, E., Chen, Y., Chuev, G. N., Cramer, C. J., Daily, J., Deegan, M. J.O., Dunning, T. H., Dupuis, M., Dyall, K. G., Fann, G. I., Fischer, S. A., Fonari, A., Früchtl, H., Gagliardi, L., Garza, J., Gawande, N., Ghosh, S., Glaesemann, K., Götz, A. W., Hammond, J., Helms, V., Hermes, E. D., Hirao, K., Hirata, S., Jacquelin, M., Jensen, L., Johnson, B. G., Jónsson, H., Kendall, R. A., Klemm, M., Kobayashi, R., Konkov, V., Krishnamoorthy, S., Krishnan, M., Lin, Z., Lins, R. D., Littlefield, R. J., Logsdail, A. J., Lopata, K., Ma, W., Marenich, A. V., Martin Del Campo, J., Mejia-Rodriguez, D., Moore, J. E., Mullin, J. M., Nakajima, T., Nascimento, D. R., Nichols, J. A., Nichols, P. J., Nieplocha, J., Otero-de-la-Roza, A., Palmer, B., Panyala, A., Pirojsirikul, T., Peng, B., Peverati, R., Pittner, J., Pollack, L., Sadayappan, P., Schatz, G. C., Shelton, W. A., Silverstein, D. W., Smith, D. M.A., Soares, T. A., Song, D., Swart, M., Taylor, H. L., Thomas, G. S., Tipparaju, V., Truhlar, D. G., Tsemekhman, K., Van Voorhis, T., Vázquez-Mayagoitia, Verma, P., Villa, O., Vishnu, A., Vogiatzis, K. D., Wang, Dunyou, Weare, J. H., Williamson, M. J., Windus, T. L., Woliński, K., Wong, A. T., Wu, Q., Yang, C., Yu, Q., Zacharias, M., Zhang, Zhiyong, Zhao, Yan, Harrison, R. J.

    المساهمون: Pacific Northwest National Laboratory, Lawrence Berkeley National Laboratory, Oak Ridge National Laboratory, Brookhaven National Laboratory, Argonne National Laboratory, Intel, University of Texas at Arlington, The State University of New York at Buffalo, Pennsylvania State University, Washington University St. Louis, Maria Curie-Sklodowska University, Iowa State University, Czech Academy of Sciences, University of Tennessee System, Université Libre de Bruxelles, Facebook Inc, Russian Academy of Sciences, University of Minnesota Twin Cities, Jodrell Bank Observatory, University of Washington, Dirac Solutions, Naval Research Laboratory, Georgia Institute of Technology, University of St Andrews, Universidad Autónoma Metropolitana, University of California San Diego, Saarland University, Sandia National Laboratories, RIKEN, University of Illinois at Urbana-Champaign, Multiscale Statistical and Quantum Physics, Australian National University, Florida Institute of Technology, University of Science and Technology of China, Fundação Oswaldo Cruz, Zerene Systems LLC, Cardiff University, Louisiana State University, CAS - Institute of Software, Universidad Nacional Autónoma de México, University of Florida, Los Alamos National Laboratory, University of Oviedo, Prince of Songkla University, University of Utah, Northwestern University, Universal Display Corporation, Universidade Federal de Pernambuco, ICREA, Cray Inc, Massachusetts Institute of Technology, 1QBit, Nvidia, University of Tennessee, Knoxville, Shandong Normal University, University of Cambridge, Advanced Micro Devices, Technische Universität München, Stanford University, Wuhan University of Technology, Stony Brook University, Department of Applied Physics, Aalto-yliopisto, Aalto University

    الوصف: Specialized computational chemistry packages have permanently reshaped the landscape of chemical and materials science by providing tools to support and guide experimental efforts and for the prediction of atomistic and electronic properties. In this regard, electronic structure packages have played a special role by using first-principle-driven methodologies to model complex chemical and materials processes. Over the past few decades, the rapid development of computing technologies and the tremendous increase in computational power have offered a unique chance to study complex transformations using sophisticated and predictive many-body techniques that describe correlated behavior of electrons in molecular and condensed phase systems at different levels of theory. In enabling these simulations, novel parallel algorithms have been able to take advantage of computational resources to address the polynomial scaling of electronic structure methods. In this paper, we briefly review the NWChem computational chemistry suite, including its history, design principles, parallel tools, current capabilities, outreach, and outlook.

    وصف الملف: application/pdf

  5. 5
    دورية أكاديمية

    المؤلفون: Windus, T L, Kathmann, S M, Crosby, L D

    المصدر: Journal of Physics: Conference Series ; volume 125, page 012017 ; ISSN 1742-6596

  6. 6
    دورية أكاديمية
  7. 7

    المؤلفون: Aprà, E., Bylaska, E. J., de Jong, W. A., Govind, N., Kowalski, K., Straatsma, T. P., Valiev, M., van Dam, H. J., Alexeev, Y., Anchell, J., Anisimov, V., Aquino, F. W., Atta-Fynn, R., Autschbach, J., Bauman, N. P., Becca, J. C., Bernholdt, D. E., Bhaskaran-Nair, K., Bogatko, S., Borowski, P., Boschen, J., Brabec, J., Bruner, A., Cauët, E., Chen, Y., Chuev, G. N., Cramer, C. J., Daily, J., Deegan, M. O., Dunning, T. H., Dupuis, M., Dyall, K. G., Fann, G. I., Fischer, S. A., Fonari, A., Früchtl, H., Gagliardi, L., Garza, J., Gawande, N., Ghosh, S., Glaesemann, K., Götz, A. W., Hammond, J., Helms, V., Hermes, E. D., Hirao, K., Hirata, S., Jacquelin, M., Jensen, L., Johnson, B. G., Jónsson, H., Kendall, R. A., Klemm, M., Kobayashi, R., Konkov, V., Krishnamoorthy, S., Krishnan, M., Lin, Z., Lins, R. D., Littlefield, R. J., Logsdail, A. J., Lopata, K., Ma, W., Marenich, A. V., Martin del Campo, J., Mejia-Rodriguez, D., Moore, J. E., Mullin, J. M., Nakajima, T., Nascimento, D. R., Nichols, J. A., Nichols, P. J., Nieplocha, J., Otero-de-la-Roza, A., Palmer, B., Panyala, A., Pirojsirikul, T., Peng, B., Peverati, R., Pittner, J., Pollack, L., Richard, R. M., Sadayappan, P., Schatz, G. C., Shelton, W. A., Silverstein, D. W., Smith, D. A., Soares, T. A., Song, D., Swart, M., Taylor, H. L., Thomas, G. S., Tipparaju, V., Truhlar, D. G., Tsemekhman, K., Van Voorhis, T., Vázquez-Mayagoitia, Á., Verma, P., Villa, O., Vishnu, A., Vogiatzis, K. D., Wang, D., Weare, J. H., Williamson, M. J., Windus, T. L., Woliński, K., Wong, A. T., Wu, Q., Yang, C., Yu, Q., Zacharias, M., Zhang, Z., Zhao, Y., Harrison, R. J.

    الوصف: not provided.

    وصف الملف: application/pdf

  8. 8

    الوصف: The Common Component Architecture (CCA) provides a means for software developers to manage the complexity of large-scale scientific simulations and to move toward a plug-and-play environment for high-performance computing. In the scientific computing context, component models also promote collaboration using independently developed software, thereby allowing particular individuals or groups to focus on the aspects of greatest interest to them. The CCA supports parallel and distributed computing as well as local high-performance connections between components in a language-independent manner. The design places minimal requirements on components and thus facilitates the integration of existing code into the CCA environment. The CCA model imposes minimal overhead to minimize the impact on application performance. The focus on high performance distinguishes the CCA from most other component models. The CCA is being applied within an increasing range of disciplines, including combustion research, global climate simulation, and computational chemistry.

    وصف الملف: application/pdf

  9. 9
    دورية أكاديمية

    المساهمون: USDOE Director. Office of Science. Office of Advanced Scientific Computing Research, Oak Ridge National Laboratory Contract DE-AC05-00OR22725 (United States)

    المصدر: 46th Cray User Group Conference, Knoxville, TN (US), 05/17/2004--05/24/2004

    الوصف: On August 15, 2002 the Department of Energy (DOE) selected the Center for Computational Sciences (CCS) at Oak Ridge National Laboratory (ORNL) to deploy a new scalable vector supercomputer architecture for solving important scientific problems in climate, fusion, biology, nanoscale materials and astrophysics. ''This program is one of the first steps in an initiative designed to provide U.S. scientists with the computational power that is essential to 21st century scientific leadership,'' said Dr. Raymond L. Orbach, director of the department's Office of Science. In FY03, CCS procured a 256-processor Cray X1 to evaluate the processors, memory subsystem, scalability of the architecture, software environment and to predict the expected sustained performance on key DOE applications codes. The results of the micro-benchmarks and kernel bench marks show the architecture of the Cray X1 to be exceptionally fast for most operations. The best results are shown on large problems, where it is not possible to fit the entire problem into the cache of the processors. These large problems are exactly the types of problems that are important for the DOE and ultra-scale simulation. Application performance is found to be markedly improved by this architecture: - Large-scale simulations of high-temperature superconductors run 25 times faster than on an IBM Power4 cluster using the same number of processors. - Best performance of the parallel ocean program (POP v1.4.3) is 50 percent higher than on Japan s Earth Simulator and 5 times higher than on an IBM Power4 cluster. - A fusion application, global GYRO transport, was found to be 16 times faster on the X1 than on an IBM Power3. The increased performance allowed simulations to fully resolve questions raised by a prior study. - The transport kernel in the AGILE-BOLTZTRAN astrophysics code runs 15 times faster than on an IBM Power4 cluster using the same number of processors. - Molecular dynamics simulations related to the phenomenon of photon echo run 8 times faster than previously ...

    وصف الملف: vp.; Text

    العلاقة: rep-no: LBNL--55302; grantno: AC03-76SF00098; osti: 831113; https://digital.library.unt.edu/ark:/67531/metadc779208Test/; ark: ark:/67531/metadc779208

  10. 10
    دورية أكاديمية

    المساهمون: United States. Department of Energy.

    المصدر: Journal Name: International Journal of High-Performance Computing Applications, vol. 20, no. 2, July 3, 2006, pp. 163--202

    الوصف: The Common Component Architecture (CCA) provides a means for software developers to manage the complexity of large-scale scientific simulations and to move toward a plug-and-play environment for high-performance computing. In the scientific computing context, component models also promote collaboration using independently developed software, thereby allowing particular individuals or groups to focus on the aspects of greatest interest to them. The CCA supports parallel and distributed computing as well as local high-performance connections between components in a language-independent manner. The design places minimal requirements on components and thus facilitates the integration of existing code into the CCA environment. The CCA model imposes minimal overhead to minimize the impact on application performance. The focus on high performance distinguishes the CCA from most other component models. The CCA is being applied within an increasing range of disciplines, including combustion research, global climate simulation, and computational chemistry.

    وصف الملف: PDF-file: 77 pages; size: 0.7 Mbytes; Text

    العلاقة: rep-no: UCRL-JRNL-208635; grantno: W-7405-ENG-48; osti: 897979; https://digital.library.unt.edu/ark:/67531/metadc889772Test/; ark: ark:/67531/metadc889772