يعرض 1 - 10 نتائج من 96 نتيجة بحث عن '"Uwizeye, Aimable"', وقت الاستعلام: 1.14s تنقيح النتائج
  1. 1
    دورية أكاديمية

    الوصف: The number of publications on environmental footprint indicators has been growing rapidly, but with limited efforts to integrate different footprints into a coherent framework. Such integration is important for comprehensive understanding of environmental issues, policy formulation and assessment of trade-offs between different environmental concerns. Here, we systematize published footprint studies and define a family of footprints that can be used for the assessment of environmental sustainability. We identify overlaps between different footprints and analyse how they relate to the nine planetary boundaries and visualize the crucial information they provide for local and planetary sustainability. In addition, we assess how the footprint family delivers on measuring progress towards Sustainable Development Goals (SDGs), considering its ability to quantify environmental pressures along the supply chain and relating them to the water-energy-food-ecosystem (WEFE) nexus and ecosystem services. We argue that the footprint family is a flexible framework where particular members can be included or excluded according to the context or area of concern. Our paper is based upon a recent workshop bringing together global leading experts on existing environmental footprint indicators.

    وصف الملف: application/pdf

  2. 2
    دورية أكاديمية

    المصدر: Journal of Animal Science. 100(7)

    الوصف: The contribution of greenhouse gas (GHG) emissions from ruminant production systems varies between countries and between regions within individual countries. The appropriate quantification of GHG emissions, specifically methane (CH4), has raised questions about the correct reporting of GHG inventories and, perhaps more importantly, how best to mitigate CH4 emissions. This review documents existing methods and methodologies to measure and estimate CH4 emissions from ruminant animals and the manure produced therein over various scales and conditions. Measurements of CH4 have frequently been conducted in research settings using classical methodologies developed for bioenergetic purposes, such as gas exchange techniques (respiration chambers, headboxes). While very precise, these techniques are limited to research settings as they are expensive, labor-intensive, and applicable only to a few animals. Head-stalls, such as the GreenFeed system, have been used to measure expired CH4 for individual animals housed alone or in groups in confinement or grazing. This technique requires frequent animal visitation over the diurnal measurement period and an adequate number of collection days. The tracer gas technique can be used to measure CH4 from individual animals housed outdoors, as there is a need to ensure low background concentrations. Micrometeorological techniques (e.g., open-path lasers) can measure CH4 emissions over larger areas and many animals, but limitations exist, including the need to measure over more extended periods. Measurement of CH4 emissions from manure depends on the type of storage, animal housing, CH4 concentration inside and outside the boundaries of the area of interest, and ventilation rate, which is likely the variable that contributes the greatest to measurement uncertainty. For large-scale areas, aircraft, drones, and satellites have been used in association with the tracer flux method, inverse modeling, imagery, and LiDAR (Light Detection and Ranging), but research is lagging in validating these methods. Bottom-up approaches to estimating CH4 emissions rely on empirical or mechanistic modeling to quantify the contribution of individual sources (enteric and manure). In contrast, top-down approaches estimate the amount of CH4 in the atmosphere using spatial and temporal models to account for transportation from an emitter to an observation point. While these two estimation approaches rarely agree, they help identify knowledge gaps and research requirements in practice.

    وصف الملف: application/pdf

  3. 3
    دورية أكاديمية

    الوصف: In the last six decades, the consumption of reactive nitrogen (Nr) in the form of fertilizer in India has been growing rapidly, whilst the nitrogen use efficiency (NUE) of cropping systems has been decreasing. These trends have led to increasing environmental losses of Nr, threatening the quality of air, soils, and fresh waters, and thereby endangering climate-stability, ecosystems, and human-health. Since it has been suggested that the fertilizer consumption of India may double by 2050, there is an urgent need for scientific research to support better nitrogen management in Indian agriculture. In order to share knowledge and to develop a joint vision, experts from the UK and India came together for a conference and workshop on “Challenges and Opportunities for Agricultural Nitrogen Science in India.” The meeting concluded with three core messages: (1) Soil stewardship is essential and legumes need to be planted in rotation with cereals to increase nitrogen fixation in areas of limited Nr availability. Synthetic symbioses and plastidic nitrogen fixation are possibly disruptive technologies, but their potential and implications must be considered. (2) Genetic diversity of crops and new technologies need to be shared and exploited to reduce N losses and support productive, sustainable agriculture livelihoods. (3) The use of leaf color sensing shows great potential to reduce nitrogen fertilizer use (by 10–15%). This, together with the usage of urease inhibitors in neem-coated urea, and better management of manure, urine, and crop residues, could result in a 20–25% improvement in NUE of India by 2030.

    وصف الملف: application/pdf

  4. 4
    كتاب

    المساهمون: University of Aberdeen, Info&Sols (Info&Sols), Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Food and Agriculture Organization of the United Nations Rome, Italie (FAO), Collège de Direction (CODIR), FAO Animal Production and Health Paper

    المصدر: https://hal.inrae.fr/hal-04020739Test ; FAO Animal Production and Health Paper. 187, 2023, 978-92-5-137550-1. ⟨10.4060/cc3981en⟩.

    الوصف: International audience ; Soils contribute to the achievement of the UN Sustainable Development Goals through carbon sequestration. By enhancing soil health and fertility, soils can play a crucial role in climate action, land degradation neutrality, and alleviating hunger. The present study provides a spatially explicit report on the state of grassland soils and can be used as a baseline for future work to explore the impacts of livestock management on soil carbon at regional, country and farm levels. Assessing the current state of grassland systems and their potential to sequester carbon in the soil is of key importance to understand the trade-offs between grassland services on food security, biodiversity conservation and climate mitigation.

  5. 5
    دورية أكاديمية

    المصدر: Proceedings of the National Academy of Sciences of the United States of America 120 (2023) 43 ; ISSN: 0027-8424

    مصطلحات موضوعية: Life Science

    الوصف: Future food farming technology faces challenges that must integrate the core goal of keeping the global temperature increase within 1.5 °C without reducing food security and nutrition. Here, we show that boosting the production of insects and earthworms based on food waste and livestock manure to provide food and feed in China will greatly contribute to meeting the country’s food security and carbon neutrality pledges. By substituting domestic products with mini-livestock (defined as earthworms and insects produced for food or feed) protein and utilizing the recovered land for bioenergy production plus carbon capture and storage, China’s agricultural sector could become carbon-neutral and reduce feed protein imports to near zero. This structural change may lead to reducing greenhouse gas emissions by 2,350 Tg CO2eq per year globally when both domestic and imported products are substituted. Overall, the success of mini-livestock protein production in achieving carbon neutrality and food security for China and its major trading partners depends on how the substitution strategies will be implemented and how the recovered agricultural land will be managed, e.g., free use for afforestation and bioenergy or by restricting this land to food crop use. Using China as an example, this study also demonstrates the potential of mini-livestock for decreasing the environmental burden of food production in general.

    وصف الملف: application/pdf

  6. 6
    دورية أكاديمية

    المساهمون: Food and Agriculture Organization of the United Nations (FAO), Agencia Nacional de Investigación y Desarrollo - Santiago, Chile, GCP/GLO/369/MUL, Project Fondecyt 1190574

    المصدر: Journal of Dairy Science

    الوصف: peer-reviewed ; Ruminant livestock are an important source of anthropogenic methane (CH4). Decreasing the emissions of enteric CH4 from ruminant production is strategic to limit the global temperature increase to 1.5°C by 2050. Research in the area of enteric CH4 mitigation has grown exponentially in the last 2 decades, with various strategies for enteric CH4 abatement being investigated: production intensification, dietary manipulation (including supplementation and processing of concentrates and lipids, and management of forage and pastures), rumen manipulation (supplementation of ionophores, 3-nitrooxypropanol, macroalgae, alternative electron acceptors, and phytochemicals), and selection of low-CH4-producing animals. Other enteric CH4 mitigation strategies are at earlier stages of research but rapidly developing. Herein, we discuss and analyze the current status of available enteric CH4 mitigation strategies with an emphasis on opportunities and barriers to their implementation in confined and partial grazing production systems, and in extensive and fully grazing production systems. For each enteric CH4 mitigation strategy, we discuss its effectiveness to decrease total CH4 emissions and emissions on a per animal product basis, safety issues, impacts on the emissions of other greenhouse gases, as well as other economic, regulatory, and societal aspects that are key to implementation. Most research has been conducted with confined animals, and considerably more research is needed to develop, adapt, and evaluate antimethanogenic strategies for grazing systems. In general, few options are currently available for extensive production systems without feed supplementation. Continuous research and development are needed to develop enteric CH4 mitigation strategies that are locally applicable. Information is needed to calculate carbon footprints of interventions on a regional basis to evaluate the impact of mitigation strategies on net greenhouse gas emissions. Economically affordable enteric CH4 mitigation ...

    العلاقة: Journal of Dairy Science; Karen A. Beauchemin, Emilio M. Ungerfeld, Adibe L. Abdalla, Clementina Alvarez, Claudia Arndt, Philippe Becquet, Chaouki Benchaar, Alexandre Berndt, Rogerio M. Mauricio, Tim A. McAllister, Walter Oyhantçabal, Saheed A. Salami, Laurence Shalloo, Yan Sun, Juan Tricarico, Aimable Uwizeye, Camillo De Camillis, Martial Bernoux, Timothy Robinson, Ermias Kebreab, Invited review: Current enteric methane mitigation options, Journal of Dairy Science, 2022, , ISSN 0022-0302, https://doi.org/10.3168/jds.2022-22091Test.; http://hdl.handle.net/11019/3342Test; https://doi.org/10.3168/jds.2022-22091Test

  7. 7
    دورية أكاديمية

    مصطلحات موضوعية: article, Verlagsveröffentlichung

    الوصف: Ammonia (NH3) has significant impacts on the environment, which can influence climate and air quality and cause acidification and eutrophication in terrestrial and aquatic ecosystems. Agricultural activities are the main sources of NH3 emissions globally. Emissions of NH3 from chicken farming are highly dependent on climate, affecting their environmental footprint and impact. In order to investigate the effects of meteorological factors and to quantify how climate change affects these emissions, a process-based model, AMmonia–CLIMate–Poultry (AMCLIM–Poultry), has been developed to simulate and predict temporal variations in NH3 emissions from poultry excretion, here focusing on chicken farms and manure spreading. The model simulates the decomposition of uric acid to form total ammoniacal nitrogen, which then partitions into gaseous NH3 that is released to the atmosphere at an hourly to daily resolution. Ammonia emissions are simulated by calculating nitrogen and moisture budgets within poultry excretion, including a dependence on environmental variables. By applying the model with global data for livestock, agricultural practice and meteorology, we calculate NH3 emissions from chicken farming on a global scale (0.5∘ resolution). Based on 2010 data, the AMCLIM–Poultry model estimates NH3 emissions from global chicken farming of 5.5 ± 1.2 Tg N yr−1, about 13 % of the agriculture-derived NH3 emissions. Taking account of partial control of the ambient environment for housed chicken (layers and broilers), the fraction of excreted nitrogen emitted as NH3 is found to be up to 3 times larger in humid tropical locations than in cold or dry locations. For spreading of manure to land, rain becomes a critical driver affecting emissions in addition to temperature, with the emission fraction being up to 5 times larger in the semi-dry tropics than in cold, wet climates. The results highlight the importance of incorporating climate effects into global NH3 emissions inventories for agricultural sources. The model shows increased ...

    وصف الملف: electronic

  8. 8
    دورية أكاديمية
  9. 9
    دورية أكاديمية

    المصدر: Proceedings of the National Academy of Sciences of the United States of America; 10/24/2023, Vol. 120 Issue 43, p1-8, 82p

    مصطلحات جغرافية: CHINA

    مستخلص: Future food farming technology faces challenges that must integrate the core goal of keeping the global temperature increase within 1.5 °C without reducing food security and nutrition. Here, we show that boosting the production of insects and earthworms based on food waste and livestock manure to provide food and feed in China will greatly contribute to meeting the country’s food security and carbon neutrality pledges. By substituting domestic products with mini-livestock (defined as earthworms and insects produced for food or feed) protein and utilizing the recovered land for bioenergy production plus carbon capture and storage, China’s agricultural sector could become carbon-neutral and reduce feed protein imports to near zero. This structural change may lead to reducing greenhouse gas emissions by 2,350 Tg CO2eq per year globally when both domestic and imported products are substituted. Overall, the success of mini-livestock protein production in achieving carbon neutrality and food security for China and its major trading partners depends on how the substitution strategies will be implemented and how the recovered agricultural land will be managed, e.g., free use for afforestation and bioenergy or by restricting this land to food crop use. Using China as an example, this study also demonstrates the potential of mini-livestock for decreasing the environmental burden of food production in general. [ABSTRACT FROM AUTHOR]

    : Copyright of Proceedings of the National Academy of Sciences of the United States of America is the property of National Academy of Sciences and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)

  10. 10
    دورية أكاديمية

    المصدر: Journal of Environmental Management 241 (2019) ; ISSN: 0301-4797

    الوصف: Livestock production is important for food security, nutrition, and landscape maintenance, but it is associated with several environmental impacts. To assess the risk and benefits arising from livestock production, transparent and robust indicators are required, such as those offered by life cycle assessment. A central question in such approaches is how environmental burden is allocated to livestock products and to manure that is re-used for agricultural production. To incentivize sustainable use of manure, it should be considered as a co-product as long as it is not disposed of, or wasted, or applied in excess of crop nutrient needs, in which case it should be treated as a waste. This paper proposes a theoretical approach to define nutrient requirements based on nutrient response curves to economic and physical optima and a pragmatic approach based on crop nutrient yield adjusted for nutrient losses to atmosphere and water. Allocation of environmental burden to manure and other livestock products is then based on the nutrient value from manure for crop production using the price of fertilizer nutrients. We illustrate and discuss the proposed method with two case studies.

    وصف الملف: application/pdf