يعرض 1 - 10 نتائج من 10 نتيجة بحث عن '"Tondo-Steele, Katelyn"', وقت الاستعلام: 1.11s تنقيح النتائج
  1. 1
    دورية أكاديمية
  2. 2
    دورية أكاديمية
  3. 3
    دورية أكاديمية
  4. 4
    دورية أكاديمية
  5. 5
    دورية أكاديمية
  6. 6
    دورية أكاديمية

    المصدر: Hematology/Oncology Articles

    الوصف: Antiestrogen therapy (AET) is an alternative to cytotoxic chemotherapy for recurrent ovarian cancer, yet the often short duration of response suggests mechanisms of resistance. We previously demonstrated that tumor microenvironment interleukin-6/leukemia inhibitory factor (IL6/LIF) cytokines induce tumor cell JAK-STAT signaling to promote cancer growth. Crosstalk between estrogen signaling and cytokine signaling has been reported. Therefore, we sought to characterize the impact of IL6/LIF signaling on estrogen signaling in epithelial ovarian cancer and investigate the efficacy of combination therapy. We first assessed patient tumors for cytokine expression and compared it with response to AET to determine clinical relevance. In vitro, we determined the effect of IL6/LIF on estrogen receptor expression and signaling. Cell viability assays were used to determine the efficacy and potential synergy of cytokine blockade and AET. We then extended studies to animal models, incorporating patient-derived stromal cells. Our results demonstrated shorter progression-free interval on AET in patients with stromal IL6/LIF expression. In vitro, IL6/LIF increased tumor cell estrogen receptor expression and signaling, and combination cytokine blockade and AET resulted in synergistic inhibition of tumor cell growth. The anticancer effect was verified in a mouse model. In conclusion, due to crosstalk between IL6/LIF cytokine signaling and estrogen signaling, dual blockade is a potential new treatment approach for ovarian cancer.

    وصف الملف: application/pdf

  7. 7
    دورية أكاديمية

    المؤلفون: Tondo-Steele, Katelyn1 (AUTHOR), McLean, Karen1 (AUTHOR) karen.mclean@roswellpark.org

    المصدر: Cancers. Oct2022, Vol. 14 Issue 19, p4696. 14p.

    مستخلص: Simple Summary: Ovarian cancer is the most lethal gynecologic malignancy. While most patients will initially respond to treatment, the majority will recur and develop chemoresistance. Therefore, we require a better understanding of how cancer cells evade chemotherapy, including the reprogramming of their signaling pathways in nutrient deficient environments. The aims of this review are to provide an overview of altered metabolism and signaling pathways in ovarian cancer and to outline potential therapeutic modalities to exploit these changes. The objective of this review is to explore the metabolomic environment of epithelial ovarian cancer that contributes to chemoresistance and to use this knowledge to identify possible targets for therapeutic intervention. The Warburg effect describes increased glucose uptake and lactate production in cancer cells. In ovarian cancer, we require a better understanding of how cancer cells reprogram their glycogen metabolism to overcome their nutrient deficient environment and become chemoresistant. Glucose metabolism in ovarian cancer cells has been proposed to be influenced by altered fatty acid metabolism, oxidative phosphorylation, and acidification of the tumor microenvironment. We investigate several markers of altered metabolism in ovarian cancer including hypoxia-induced factor 1, VEGF, leptin, insulin-like growth factors, and glucose transporters. We also discuss the signaling pathways involved with these biomarkers including PI3K/AKT/mTOR, JAK/STAT and OXPHOS. This review outlines potential metabolic targets to overcome chemoresistance in ovarian cancer. Continued research of the metabolic changes in ovarian cancer is needed to identify and target these alterations to improve treatment approaches. [ABSTRACT FROM AUTHOR]

  8. 8
    دورية أكاديمية

    المصدر: BMJ Simulation and Technology Enhanced Learning ; volume 6, issue 3, page 190-191 ; ISSN 2056-6697

    مصطلحات موضوعية: Health Informatics, Education, Modeling and Simulation

  9. 9
    دورية أكاديمية
  10. 10
    دورية أكاديمية

    المصدر: BMJ Simulation & Technology Enhanced Learning; May2020, Vol. 6 Issue 3, p190-191, 2p