يعرض 1 - 10 نتائج من 140 نتيجة بحث عن '"Selviah, David"', وقت الاستعلام: 0.89s تنقيح النتائج
  1. 1
    تقرير

    الوصف: This paper investigates how the inherent quantization of camera sensors introduces uncertainty in the calculated position of an observed feature during 3-D mapping. It is typically assumed that pixels and scene features are points, however, a pixel is a two-dimensional area that maps onto multiple points in the scene. This uncertainty region is a bound for quantization error in the calculated point positions. Earlier studies calculated the volume of two intersecting pixel views, approximated as a cuboid, by projecting pyramids and cones from the pixels into the scene. In this paper, we reverse this approach by generating an array of scene points and calculating which scene points are detected by which pixel in each camera. This enables us to map the uncertainty regions for every pixel correspondence for a given camera system in one calculation, without approximating the complex shapes. The dependence of the volumes of the uncertainty regions on camera baseline length, focal length, pixel size, and distance to object, shows that earlier studies overestimated the quantization error by at least a factor of two. For static camera systems the method can also be used to determine volumetric scene geometry without the need to calculate disparity maps.
    Comment: As submitted to IEEE Transactions on Pattern Analysis and Machine Intelligence on 4th September 2020

    الوصول الحر: http://arxiv.org/abs/2010.08390Test

  2. 2
    دورية أكاديمية

    المؤلفون: Potort, Francesco, Torres-Sospedra, Joaquín, Quezada Gaibor, Darwin, Jiménez, Antonio Ramón, Seco, Fernando, Perez-Navarro, Antoni, Ortiz, Miguel, Zhu, Ni, Renaudin, Valerie, Ichikari, Ryosuke, Shimomura, Ryo, Kaichi, Tomoya, Zhou, Baoding, Liu, Xu, Gu, Zhining, Yang, Chengjing, Wu, Zhiqian, Xie, Doudou, Huang, Can, Zheng, Lingxiang, Peng, Ao, Jin, Ge, Wang, Qu, Luo, Haiyong, Xiong, Hao, Bao, Linfeng, Zhang, Pushuo, Zhao, Fang, Yu, Chia-An, Hung, Chung-Hao, Antsfeld, Leonid, Chidlovskii, Boris, Jiang, Haitao, Xia, Ming, Yan, Dayu, Li, Yuhang, Dong, Yitong, Silva, Ivo, Pendão, Cristiano, Meneses, Filipe, Nicolau, Maria João, Costa, António, Moreira, Adriano, De Cock, Cedric, Plets, David, Opiela, Miroslav, Dzama, Jakub, Zhang, Liqiang, Li, Hu, Chen, Boxuan, Liu, Yu, Yean, Seanglidet, Lim, Bo Zhi, Teo, Wei Jie, Lee, Bu Sung, OH, HL, ohta, nozomu, Nagae, Satsuki, Kurata, Takeshi, dongyan, wei, Ji, Xinchun, Zhang, Wenchao, Kram, Sebastian, Stahlke, Maximilian, Mutschler, Christopher, Crivello, Antonino, Barsocchi, Paolo, GIROLAMI, MICHELE, Palumbo, Filippo, Chen, Ruizhi, Wu, Yuan, Li, Wei, Yu, Yue, Xu, Shihao, Huang, Lixiong, Liu, Tao, Kuang, Jian, Niu, Xiaoji, Yoshida, Takuto, Nagata, Yoshiteru, Fukushima, Yuto, Fukatani, Nobuya, Hayashida, Nozomi, Asai, Yusuke, Urano, Kenta, Ge, Wenfei, Lee, Nien-Ting, Fang, Shih-Hau, Jie, You-Cheng, Young, Shawn-Rong, Chien, Ying-Ren, Yu, Chih-Chieh, Ma, Chengqi, Wu, Bang, Zhang, Wei, Wang, Yankun, Fan, Yonglei, Poslad, Stefan, Selviah, David, Wang, Weixi, Yuan, Hong, Yonamoto, Yoshitomo, Yamaguchi, Masahiro

    المساهمون: Universitat Oberta de Catalunya (UOC)

    الوصف: Every year, for ten years now, the IPIN competition has aimed at evaluating real-world indoor localisation systems by testing them in a realistic environment, with realistic movement, using the EvAAL framework. The competition provided a unique overview of the state-of-the-art of systems, technologies, and methods for indoorpositioning andnavigationpurposes.Throughfaircomparison of the performance achieved by each system, the competition was able to identify the most promising approaches and to pinpoint the most critical working conditions. In 2020, the competition included 5 diverse off-site off-site Tracks, each resembling real use cases and challenges for indoor positioning. The results in terms of participation and accuracy of the proposed systems have been encouraging. The best performing competitors obtained a third quartile of error of 1m for the Smartphone Track and 0.5m for the Footmounted IMU Track. While not running on physical systems, but only as algorithms, these results represent impressive achievements

    وصف الملف: application/pdf

  3. 3
    دورية أكاديمية

    المؤلفون: Potorti, Francesco, Torres-Sospedra, Joaquín, Quezada-Gaibor, Darwin, Jimenez, Antonio Ramon, Seco, Fernando, Perez-Navarro, Antoni, Ortiz, Miguel, Zhu, Ni, Renaudin, Valerie, Ichikari, Ryosuke, Shimomura, Ryo, Ohta, Nozomu, Nagae, Satsuki, Kurata, Takeshi, Wei, Dongyan, Ji, Xinchun, Zhang, Wenchao, Kram, Sebastian, Stahlke, Maximilian, Mutschler, Christopher, Crivello, Antonino, Barsocchi, Paolo, Girolami, Michele, Palumbo, Filippo, Chen, Ruizhi, Wu, Yuan, Li, Wei, Yu, Yue, Xu, Shihao, Huang, Lixiong, Liu, Tao, Kuang, Jian, Niu, Xiaoji, Yoshida, Takuto, Nagata, Yoshiteru, Fukushima, Yuto, Fukatani, Nobuya, Hayashida, Nozomi, Asai, Yusuke, Urano, Kenta, Ge, Wenfei, Lee, Nien-Ting, Fang, Shih-Hau, Jie, You-Cheng, Young, Shawn-Rong, Chien, Ying-Ren, Yu, Chih-Chieh, Ma, Chengqi, Wu, Bang, Zhang, Wei, Wang, Yankun, Fan, Yonglei, Poslad, Stefan, Selviah, David R., Wang, Weixi, Yuan, Hong, Yonamoto, Yoshitomo, Yamaguchi, Masahiro, Kaichi, Tomoya, Zhou, Baoding, Liu, Xu, Gu, Zhining, Yang, Chengjing, Wu, Zhiqian, Xie, Doudou, Huang, Can, Zheng, Lingxiang, Peng, Ao, Jin, Ge, Wang, Qu, Luo, Haiyong, Xiong, Hao, Bao, Linfeng, Zhang, Pushuo, Zhao, Fang, Yu, Chia-An, Hung, Chun-Hao, Antsfeld, Leonid, Silva, Ivo Miguel Menezes, Pendão, Cristiano Gonçalves, Meneses, Filipe, Nicolau, Maria João, Costa, António, Moreira, Adriano, Cock, Cedric De, Plets, David, Opiela, Miroslav, Jakub Džama, Zhang, Liqiang, Li, Hu, Chen, Boxuan, Liu, Yu, Yean, Seanglidet, Lim, Bo Zhi, Teo, Wei Jie, Lee, Bu Sung, Oh, Hong Lye

    الوصف: Every year, for ten years now, the IPIN competition has aimed at evaluating real-world indoor localisation systems by testing them in a realistic environment, with realistic movement, using the EvAAL framework. The competition provided a unique overview of the state-of-the-art of systems, technologies, and methods for indoor positioning and navigation purposes. Through fair comparison of the performance achieved by each system, the competition was able to identify the most promising approaches and to pinpoint the most critical working conditions. In 2020, the competition included 5 diverse off-site off-site Tracks, each resembling real use cases and challenges for indoor positioning. The results in terms of participation and accuracy of the proposed systems have been encouraging. The best performing competitors obtained a third quartile of error of 1 m for the Smartphone Track and 0.5 m for the Foot-mounted IMU Track. While not running on physical systems, but only as algorithms, these results represent impressive achievements. ; Track 3 organizers were supported by the European Union’s Horizon 2020 Research and Innovation programme under the Marie Skłodowska Curie Grant 813278 (A-WEAR: A network for dynamic WEarable Applications with pRivacy constraints), MICROCEBUS (MICINN, ref. RTI2018-095168-B-C55, MCIU/AEI/FEDER UE), INSIGNIA (MICINN ref. PTQ2018-009981), and REPNIN+ (MICINN, ref. TEC2017-90808-REDT). We would like to thanks the UJI’s Library managers and employees for their support while collecting the required datasets for Track 3. Track 5 organizers were supported by JST-OPERA Program, Japan, under Grant JPMJOP1612. Track 7 organizers were supported by the Bavarian Ministry for Economic Affairs, Infrastructure, Transport and Technology through the Center for Analytics-Data-Applications (ADA-Center) within the framework of “BAYERN DIGITAL II. ” Team UMinho (Track 3) was supported by FCT—Fundação para a Ciência e Tecnologia within the R&D Units Project Scope under Grant UIDB/00319/2020, and the Ph.D. ...

    وصف الملف: application/pdf

    العلاقة: info:eu-repo/grantAgreement/EC/H2020/813278/EU; info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F00319%2F2020/PT; info:eu-repo/grantAgreement/FCT/POR_NORTE/PD%2FBD%2F137401%2F2018/PT; https://ieeexplore.ieee.org/document/9439493Test; F. Potortì et al., "Off-Line Evaluation of Indoor Positioning Systems in Different Scenarios: The Experiences From IPIN 2020 Competition," in IEEE Sensors Journal, vol. 22, no. 6, pp. 5011-5054, 15 March15, 2022, doi:10.1109/JSEN.2021.3083149.; https://hdl.handle.net/1822/82092Test

  4. 4
    دورية أكاديمية

    الوصف: IPIN 2019 Competition, sixth in a series of IPIN competitions, was held at the CNR Research Area of Pisa (IT), integrated into the program of the IPIN 2019 Conference. It included two on-site real-time Tracks and three off-site Tracks. The four Tracks presented in this paper were set in the same environment, made of two buildings close together for a total usable area of 1000 m 2 outdoors and and 6000 m 2 indoors over three floors, with a total path length exceeding 500 m. IPIN competitions, based on the EvAAL framework, have aimed at comparing the accuracy performance of personal positioning systems in fair and realistic conditions: past editions of the competition were carried in big conference settings, university campuses and a shopping mall. Positioning accuracy is computed while the person carrying the system under test walks at normal walking speed, uses lifts and goes up and down stairs or briefly stops at given points. Results presented here are a showcase of state-of-the-art systems tested side by side in real-world settings as part of the on-site real-time competition Tracks. Results for off-site Tracks allow a detailed and reproducible comparison of the most recent positioning and tracking algorithms in the same environment as the on-site Tracks.

    وصف الملف: application/pdf

    العلاقة: Development of human enhancement fire helmet and fire suppression support system; Basic Science Research Program; ICT Research and Development Program of MSIP/IITP (Development of Precise Positioning Technology for the Enhancement of Pedestrian Position/Spatial Cognition and Sports Competition Analysis); MICROCEBUS; REPNIN PLUS; TECHNOFUSION(III)CM; Development of wireless communication tracking-based location information system in disaster scene for fire-fighters and person who requested rescue; Strategic Priority Research Program; IEEE Access, Vol. 8 (2020); F. Potortì et al., "The IPIN 2019 Indoor Localisation Competition—Description and Results," in IEEE Access, vol. 8, pp. 206674-206718, 2020, doi:10.1109/ACCESS.2020.3037221.; http://hdl.handle.net/10234/200929Test

  5. 5
    دورية أكاديمية
  6. 6
    دورية أكاديمية

    المساهمون: Potortì, Francesco, Crivello, Antonino, Palumbo, Filippo, Girolami, Michele, Barsocchi, Paolo, Torres-Sospedra, Joaquín, Jiménez Ruiz, Antonio Ramón, Pérez-Navarro, Antoni, Martín Mendoza-Silva, Germán, Seco, Fernando, Renaudin, Valerie, Park, Soyoung, Lee, Jae Hong, Park, Chan Gook, Lee, Keumryeol, Choi, Yang-Seok, Talwar, Shilpa, Cho, Seong Yun, Chidlovskii, Boris, Peng, Ao, Wu, Bang, Ma, Chengqi, Poslad, Stefan, Selviah, David R., Zhang, Wenchao, Yuan, Hong, Leu, Jenq-Shiou, Uchiyama, Hideaki, Thomas, Diego, Shimada, Atsushi, Lungenstrass Poulsen, Tomás, Ashraf, Imran, Ali, Muhammad Usman, Opiela, Miroslav, Moreira, Adriano, Costa, António, Trogh, Jens, Plets, David, Chien, Ying-Ren, Fang, Shih-Hau, Tsao, Yu

    الوصف: IPIN 2019 Competition, sixth in a series of IPIN competitions, was held at the CNR Research Area of Pisa (IT), integrated into the program of the IPIN 2019 Conference. It included two on-site real-time Tracks and three off-site Tracks. The four Tracks presented in this paper were set in the same environment, made of two buildings close together for a total usable area of 1000 m2 outdoors and and 6000 m2 indoors over three floors, with a total path length exceeding 500 m. IPIN competitions, based on the EvAAL framework, have aimed at comparing the accuracy performance of personal positioning systems in fair and realistic conditions: past editions of the competition were carried in big conference settings, university campuses and a shopping mall. Positioning accuracy is computed while the person carrying the system under test walks at normal walking speed, uses lifts and goes up and down stairs or briefly stops at given points. Results presented here are a showcase of state-of-the-art systems tested side by side in real-world settings as part of the on-site real-time competition Tracks. Results for off-site Tracks allow a detailed and reproducible comparison of the most recent positioning and tracking algorithms in the same environment as the on-site Tracks. ; Fundación para la Ciencia y Tecnología; 10.13039/100007225-Ministry of Science and Technology; Institute for Information and communications Technology Promotion IITP grant funded by the Korea government MSIT; Basic Science Research Program through the National Research Foundation of Korea NRF funded by the Ministry of Science; MSIT Ministry of Science and ICT Korea under the ITRC; Slovak Research and Development Agency; Strategic Priority Research Program; Korea government NFA; ICT R and D Program of MSIPIITP; 10.13039/501100004837-Ministerio de Ciencia e Innovación; JSPS KAKENHI; ICT R and D Program of MSIPIITP. ; Peer reviewed

    العلاقة: Publisher's version; https://doi.org/10.1109/ACCESS.2020.3037221Test; Sí; IEEE Access 8: 206674 - 206718 (2020); http://hdl.handle.net/10261/232089Test

  7. 7
    دورية أكاديمية

    المساهمون: Universitat Politècnica de València. Instituto Universitario de Tecnología Nanofotónica - Institut Universitari de Tecnologia Nanofotònica, Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions, COMISION DE LAS COMUNIDADES EUROPEA

    الوصف: [EN] We report recent advances in photonic-electronic integration developed in the European research project L3MATRIX. The aim of the project was to demonstrate the basic building blocks of a co-packaged optical system. Two-dimensional silicon photonics arrays with 64 modulators were fabricated. Novel modulation schemes based on slow light modulation were developed to assist in achieving an efficient performance of the module. Integration of DFB laser sources within each cell in the matrix was demonstrated as well using wafer bonding between the InP and SOI wafers. Improved semiconductor quantum dot MBE growth, characterization and gain stack designs were developed. Packaging of these 2D photonic arrays in a chiplet configuration was demonstrated using a vertical integration approach in which the optical interconnect matrix was flip-chip assembled on top of a CMOS mimic chip with 2D vertical fiber coupling. The optical chiplet was further assembled on a substrate to facilitate integration with the multi-chip module of the co-packaged system with a switch surrounded by several such optical chiplets. We summarize the features of the L3MATRIX co-package technology platform and its holistic toolbox of technologies to address the next generation of computing challenges. ; The L3MATRIX project is co-funded by the Horizon 2020 Framework Programme of the European Union with Grant Agreement Nr. 688544. L3MATRIX project is an initiative of the Photonics Public Private Partnership. ; Papatryfonos, K.; Selviah, DR.; Maman, A.; Hasharoni, K.; Brimont, ACJ.; Zanzi, A.; Kraft, J. (2021). Co-Package Technology Platform for Low-Power and Low-Cost Data Centers. Applied Sciences. 11(13):1-24. https://doi.org/10.3390/app11136098Test ; 1 ; 24 ; 11 ; 13

    العلاقة: Applied Sciences; info:eu-repo/grantAgreement/EC/H2020/688544/EU; https://doi.org/10.3390/app11136098Test; http://hdl.handle.net/10251/182723Test; urn:eissn:2076-3417

  8. 8
    دورية أكاديمية

    المصدر: IEEE access, 8, 206674–206718 ; ISSN: 2169-3536

    الوصف: PIN 2019 Competition, sixth in a series of IPIN competitions, was held at the CNR Research Area of Pisa (IT), integrated into the program of the IPIN 2019 Conference. It included two on-site real-time Tracks and three off-site Tracks. The four Tracks presented in this paper were set in the same environment, made of two buildings close together for a total usable area of 1000 m 2 outdoors and and 6000 m 2 indoors over three floors, with a total path length exceeding 500 m. IPIN competitions, based on the EvAAL framework, have aimed at comparing the accuracy performance of personal positioning systems in fair and realistic conditions: past editions of the competition were carried in big conference settings, university campuses and a shopping mall. Positioning accuracy is computed while the person carrying the system under test walks at normal walking speed, uses lifts and goes up and down stairs or briefly stops at given points. Results presented here are a showcase of state-of-the-art systems tested side by side in real-world settings as part of the on-site real-time competition Tracks. Results for off-site Tracks allow a detailed and reproducible comparison of the most recent positioning and tracking algorithms in the same environment as the on-site Tracks.

    وصف الملف: application/pdf

    العلاقة: info:eu-repo/semantics/altIdentifier/wos/000594446900001; info:eu-repo/semantics/altIdentifier/issn/2169-3536; https://publikationen.bibliothek.kit.edu/1000130123Test; https://publikationen.bibliothek.kit.edu/1000130123/104023450Test; https://doi.org/10.5445/IR/1000130123Test

  9. 9
    دورية أكاديمية

    المساهمون: H2020 Industrial Leadership

    المصدر: AIP Advances ; volume 11, issue 2 ; ISSN 2158-3226

    الوصف: A series of AlxGa(1−x)As ternary alloys were grown by molecular beam epitaxy (MBE) at the technologically relevant composition range, x < 0.45, and characterized using spectroscopic ellipsometry to provide accurate refractive index values in the wavelength region below the bandgap. Particular attention is given to O-band and C-band telecommunication wavelengths around 1.3 µm and 1.55 µm, as well as at 825 nm. MBE gave a very high accuracy for grown layer thicknesses, and the alloys’ precise compositions and bandgap values were confirmed using high-resolution x-ray diffraction and photoluminescence, to improve the refractive index model fitting accuracy. This work is the first systematic study for MBE-grown AlxGa(1−x)As across a wide spectral range. In addition, we employed a very rigorous measurement-fitting procedure, which we present in detail.

  10. 10
    دورية أكاديمية