يعرض 1 - 10 نتائج من 40 نتيجة بحث عن '"Seltzer, S. J."', وقت الاستعلام: 2.21s تنقيح النتائج
  1. 1
    تقرير

    المصدر: Journal of Chemical Physics 133, 144703 (2010)

    الوصف: Many technologies based on cells containing alkali-metal atomic vapor benefit from the use of anti-relaxation surface coatings in order to preserve atomic spin polarization. In particular, paraffin has been used for this purpose for several decades and has been demonstrated to allow an atom to experience up to 10,000 collisions with the walls of its container without depolarizing, but the details of its operation remain poorly understood. We apply modern surface and bulk techniques to the study of paraffin coatings, in order to characterize the properties that enable the effective preservation of alkali spin polarization. These methods include Fourier transform infrared spectroscopy, differential scanning calorimetry, atomic force microscopy, near-edge X-ray absorption fine structure spectroscopy, and X-ray photoelectron spectroscopy. We also compare the light-induced atomic desorption yields of several different paraffin materials. Experimental results include the determination that crystallinity of the coating material is unnecessary, and the detection of C=C double bonds present within a particular class of effective paraffin coatings. Further study should lead to the development of more robust paraffin anti-relaxation coatings, as well as the design and synthesis of new classes of coating materials.
    Comment: 12 pages, 12 figures. Copyright 2010 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The following article appeared in the Journal of Chemical Physics and may be found at http://link.aip.org/link/?JCP/133/144703Test

    الوصول الحر: http://arxiv.org/abs/1002.4417Test

  2. 2
    تقرير

    المؤلفون: Seltzer, S. J., Romalis, M. V.

    المصدر: Journal of Applied Physics 106, 114905 (2009)

    مصطلحات موضوعية: Physics - Atomic Physics

    الوصف: Antirelaxation surface coatings allow long spin relaxation times in alkali-metal cells without buffer gas, enabling faster diffusion of the alkali atoms throughout the cell and giving larger signals due to narrower optical linewidths. Effective coatings were previously unavailable for operation at temperatures above 80 C. We demonstrate that octadecyltrichlorosilane (OTS) can allow potassium or rubidium atoms to experience hundreds of collisions with the cell surface before depolarizing, and that an OTS coating remains effective up to about 170 C for both potassium and rubidium. We consider the experimental concerns of operating without buffer gas and with minimal quenching gas at high vapor density, studying the stricter need for effective quenching of excited atoms and deriving the optical rotation signal shape for atoms with resolved hyperfine structure in the spin-temperature regime. As an example of a high-temperature application of antirelaxation coated alkali vapor cells, we operate a spin-exchange relaxation-free atomic magnetometer with sensitivity of 6 fT/sqrt(Hz) and magnetic linewidth as narrow as 2 Hz.
    Comment: 8 pages, 5 figures. The following article appeared in Journal of Applied Physics and may be found at http://link.aip.org/link/?jap/106/114905Test

    الوصول الحر: http://arxiv.org/abs/0906.3054Test

  3. 3
    تقرير

    مصطلحات موضوعية: Physics - Atomic Physics, Physics - Chemical Physics

    الوصف: We demonstrate detection of proton NMR signals with a radio frequency atomic magnetometer tuned to the NMR frequency of 62 kHz. High-frequency operation of the atomic magnetometer makes it relatively insensitive to ambient magnetic field noise. We obtain magnetic field sensitivity of 7 fT/Hz$^{1/2}$ using only a thin aluminum shield. We also derive an expression for the fundamental sensitivity limit of a surface inductive pick-up coil as a function of frequency and find that an atomic rf magnetometer is intrinsically more sensitive than a coil of comparable size for frequencies below about 50 MHz.
    Comment: 7 pages

  4. 4
    تقرير

    مصطلحات موضوعية: Physics - Atomic Physics

    الوصف: We observe quantum beats with periodic revivals due to non-linear spacing of Zeeman levels in the ground state of potassium atoms and demonstrate their synchronous optical pumping by double modulation of the pumping light at the Larmor frequency and the revival frequency. We show that synchronous pumping increases the degree of spin polarization by a factor of 4. As a practical example, we explore the application of this double-modulation technique to atomic magnetometers operating in the geomagnetic field range and find that it can increase the sensitivity and reduce magnetic field orientation-dependent measurement errors endemic to alkali-metal magnetometers.
    Comment: 4 pages

  5. 5
    دورية أكاديمية

    المصدر: Journal of Chemical Physics; 10/14/2010, Vol. 133 Issue 14, p144703, 11p, 2 Diagrams, 1 Chart, 10 Graphs

    مستخلص: Many technologies based on cells containing alkali-metal atomic vapor benefit from the use of antirelaxation surface coatings in order to preserve atomic spin polarization. In particular, paraffin has been used for this purpose for several decades and has been demonstrated to allow an atom to experience up to 10 000 collisions with the walls of its container without depolarizing, but the details of its operation remain poorly understood. We apply modern surface and bulk techniques to the study of paraffin coatings in order to characterize the properties that enable the effective preservation of alkali spin polarization. These methods include Fourier transform infrared spectroscopy, differential scanning calorimetry, atomic force microscopy, near-edge x-ray absorption fine structure spectroscopy, and x-ray photoelectron spectroscopy. We also compare the light-induced atomic desorption yields of several different paraffin materials. Experimental results include the determination that crystallinity of the coating material is unnecessary, and the detection of C==C double bonds present within a particular class of effective paraffin coatings. Further study should lead to the development of more robust paraffin antirelaxation coatings, as well as the design and synthesis of new classes of coating materials. [ABSTRACT FROM AUTHOR]

    : Copyright of Journal of Chemical Physics is the property of American Institute of Physics and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)

  6. 6
    دورية أكاديمية

    المؤلفون: Seltzer, S. J., Romalis, M. V.

    المصدر: Journal of Applied Physics; Dec2009, Vol. 106 Issue 11, p114905-114913, 8p, 2 Charts, 5 Graphs

    مستخلص: Antirelaxation surface coatings allow long spin relaxation times in alkali-metal cells without buffer gas, enabling faster diffusion of the alkali atoms throughout the cell and giving larger signals due to narrower optical linewidths. Effective coatings were previously unavailable for operation at temperatures above 80 °C. We demonstrate that octadecyltrichlorosilane (OTS) can allow potassium or rubidium atoms to experience hundreds of collisions with the cell surface before depolarizing, and that an OTS coating remains effective up to about 170 °C for both potassium and rubidium. We consider the experimental concerns of operating without buffer gas and with minimal quenching gas at high vapor density, studying the stricter need for effective quenching of excited atoms and deriving the optical rotation signal shape for atoms with resolved hyperfine structure in the spin-temperature regime. As an example of a high-temperature application of antirelaxation coated alkali vapor cells, we operate a spin-exchange relaxation-free atomic magnetometer with sensitivity of 6 fT/Hz and magnetic linewidth as narrow as 2 Hz. [ABSTRACT FROM AUTHOR]

    : Copyright of Journal of Applied Physics is the property of American Institute of Physics and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)

  7. 7
    دورية أكاديمية

    المصدر: Journal of Applied Physics. Nov2008, Vol. 104 Issue 10, p103116. 7p. 1 Diagram, 3 Graphs.

    مستخلص: The evaluation of different surface coatings used in alkali metal atomic magnetometers is necessary for the improvement of sensitivity of these devices. A method to measure the polarization lifetime of alkali atoms in the region between substrates with different coatings was developed to determine the effectiveness of the coating at preserving alkali spin polarization as well as chemical compatibility and high-temperature stability. Multiple coatings can be compared under identical experimental conditions, using an experimental geometry that allows surface characterization before and after evaluation of the polarization lifetime. Multilayered, cross-linked octadecyltrichlorosilane films, alkyltrichlorosilane monolayers, and octadecylphosphonic acid monolayers were evaluated using this approach. [ABSTRACT FROM AUTHOR]

  8. 8
    كتاب
  9. 9
    كتاب
  10. 10
    كتاب