يعرض 1 - 10 نتائج من 1,145 نتيجة بحث عن '"Segawa, Y"', وقت الاستعلام: 1.46s تنقيح النتائج
  1. 1
    تقرير

    الوصف: The Simons Array (SA) project is a ground-based Cosmic Microwave Background (CMB) polarization experiment. The SA observes the sky using three telescopes, and POLARBEAR-2A (PB-2A) is the receiver system on the first telescope. For the ground-based experiment, atmospheric fluctuation is the primary noise source that could cause polarization leakage. In the PB-2A receiver system, a continuously rotating half-wave plate (HWP) is used to mitigate the polarization leakage. However, due to the rapid modulation of the polarization signal, the uncertainty in the time constant of the detector results in an uncertainty in the polarization angle. For PB-2A, the time constant of each bolometer needs to be calibrated at the sub-millisecond level to avoid introducing bias to the polarization signal. We have developed a new calibrator system that can be used to calibrate the time constants of the detectors. In this study, we present the design of the calibration system and the preliminary results of the time constant calibration for PB-2A.
    Comment: Proceedings of the 15th Asia Pacific Physics Conference (APPC15)

    الوصول الحر: http://arxiv.org/abs/2403.16620Test

  2. 2
    تقرير

    المصدر: Journal Low Temperature Physics 2018

    الوصف: We present on the status of POLARBEAR-2 A (PB2-A) focal plane fabrication. The PB2-A is the first of three telescopes in the Simon Array (SA), which is an array of three cosmic microwave background (CMB) polarization sensitive telescopes located at the POLARBEAR (PB) site in Northern Chile. As the successor to the PB experiment, each telescope and receiver combination is named as PB2-A, PB2-B, and PB2-C. PB2-A and -B will have nearly identical receivers operating at 90 and 150 GHz while PB2-C will house a receiver operating at 220 and 270 GHz. Each receiver contains a focal plane consisting of seven close-hex packed lenslet coupled sinuous antenna transition edge sensor bolometer arrays. Each array contains 271 di-chroic optical pixels each of which have four TES bolometers for a total of 7588 detectors per receiver. We have produced a set of two types of candidate arrays for PB2-A. The first we call Version 11 (V11) and uses a silicon oxide (SiOx) for the transmission lines and cross-over process for orthogonal polarizations. The second we call Version 13 (V13) and uses silicon nitride (SiNx) for the transmission lines and cross-under process for orthogonal polarizations. We have produced enough of each type of array to fully populate the focal plane of the PB2-A receiver. The average wirebond yield for V11 and V13 arrays is 93.2% and 95.6% respectively. The V11 arrays had a superconducting transition temperature (Tc) of 452 +/- 15 mK, a normal resistance (Rn) of 1.25 +/- 0.20 Ohms, and saturations powers of 5.2 +/- 1.0 pW and 13 +/- 1.2 pW for the 90 and 150 GHz bands respectively. The V13 arrays had a superconducting transition temperature (Tc) of 456 +/-6 mK, a normal resistance (Rn) of 1.1 +/- 0.2 Ohms, and saturations powers of 10.8 +/- 1.8 pW and 22.9 +/- 2.6 pW for the 90 and 150 GHz bands respectively.

    الوصول الحر: http://arxiv.org/abs/2210.04117Test

  3. 3
    تقرير

    المصدر: The POLARBEAR Collaboration 2022 ApJ 931 101

    الوصف: We report an improved measurement of the degree-scale cosmic microwave background $B$-mode angular-power spectrum over 670 square-degree sky area at 150 GHz with POLARBEAR. In the original analysis of the data, errors in the angle measurement of the continuously rotating half-wave plate, a polarization modulator, caused significant data loss. By introducing an angle-correction algorithm, the data volume is increased by a factor of 1.8. We report a new analysis using the larger data set. We find the measured $B$-mode spectrum is consistent with the $\Lambda$CDM model with Galactic dust foregrounds. We estimate the contamination of the foreground by cross-correlating our data and Planck 143, 217, and 353 GHz measurements, where its spectrum is modeled as a power law in angular scale and a modified blackbody in frequency. We place an upper limit on the tensor-to-scalar ratio $r$ < 0.33 at 95% confidence level after marginalizing over the foreground parameters.
    Comment: 16 pages, 9 figures, 8 tables, Published in ApJ

    الوصول الحر: http://arxiv.org/abs/2203.02495Test

  4. 4
    دورية أكاديمية

    المصدر: The Astrophysical Journal. 931(2)

    الوصف: We report an improved measurement of the degree-scale cosmic microwave background B-mode angular-power spectrum over 670 deg2 sky area at 150 GHz with Polarbear. In the original analysis of the data, errors in the angle measurement of the continuously rotating half-wave plate, a polarization modulator, caused significant data loss. By introducing an angle-correction algorithm, the data volume is increased by a factor of 1.8. We report a new analysis using the larger data set. We find the measured B-mode spectrum is consistent with the ΛCDM model with Galactic dust foregrounds. We estimate the contamination of the foreground by cross-correlating our data and Planck 143, 217, and 353 GHz measurements, where its spectrum is modeled as a power law in angular scale and a modified blackbody in frequency. We place an upper limit on the tensor-to-scalar ratio r < 0.33 at 95% confidence level after marginalizing over the foreground parameters.

    وصف الملف: application/pdf

  5. 5
    تقرير

    المصدر: ApJ 904, 65 (2020)

    الوصف: We report a measurement of the E-mode polarization power spectrum of the cosmic microwave background (CMB) using 150 GHz data taken from July 2014 to December 2016 with the POLARBEAR experiment. We reach an effective polarization map noise level of $32\,\mu\mathrm{K}$-$\mathrm{arcmin}$ across an observation area of 670 square degrees. We measure the EE power spectrum over the angular multipole range $500 \leq \ell <3000$, tracing the third to seventh acoustic peaks with high sensitivity. The statistical uncertainty on E-mode bandpowers is $\sim 2.3 \mu {\rm K}^2$ at $\ell \sim 1000$ with a systematic uncertainty of 0.5$\mu {\rm K}^2$. The data are consistent with the standard $\Lambda$CDM cosmological model with a probability-to-exceed of 0.38. We combine recent CMB E-mode measurements and make inferences about cosmological parameters in $\Lambda$CDM as well as in extensions to $\Lambda$CDM. Adding the ground-based CMB polarization measurements to the Planck dataset reduces the uncertainty on the Hubble constant by a factor of 1.2 to $H_0 = 67.20 \pm 0.57 {\rm km\,s^{-1} \,Mpc^{-1}}$. When allowing the number of relativistic species ($N_{eff}$) to vary, we find $N_{eff} = 2.94 \pm 0.16$, which is in good agreement with the standard value of 3.046. Instead allowing the primordial helium abundance ($Y_{He}$) to vary, the data favor $Y_{He} = 0.248 \pm 0.012$. This is very close to the expectation of 0.2467 from Big Bang Nucleosynthesis. When varying both $Y_{He}$ and $N_{eff}$, we find $N_{eff} = 2.70 \pm 0.26$ and $Y_{He} = 0.262 \pm 0.015$.
    Comment: 15 pages, 5 figures, submitted to ApJ

    الوصول الحر: http://arxiv.org/abs/2005.06168Test

  6. 6
    تقرير

    المصدر: ApJ 897, 55 (2020)

    الوصف: We present a measurement of the $B$-mode polarization power spectrum of the cosmic microwave background (CMB) using taken from July 2014 to December 2016 with the POLARBEAR experiment. The CMB power spectra are measured using observations at 150 GHz with an instantaneous array sensitivity of $\mathrm{NET}_\mathrm{array}=23\, \mu \mathrm{K} \sqrt{\mathrm{s}}$ on a 670 square degree patch of sky centered at (RA, Dec)=($+0^\mathrm{h}12^\mathrm{m}0^\mathrm{s},-59^\circ18^\prime$). A continuously rotating half-wave plate is used to modulate polarization and to suppress low-frequency noise. We achieve $32\,\mu\mathrm{K}$-$\mathrm{arcmin}$ effective polarization map noise with a knee in sensitivity of $\ell = 90$, where the inflationary gravitational wave signal is expected to peak. The measured $B$-mode power spectrum is consistent with a $\Lambda$CDM lensing and single dust component foreground model over a range of multipoles $50 \leq \ell \leq 600$. The data disfavor zero $C_\ell^{BB}$ at $2.2\sigma$ using this $\ell$ range of POLARBEAR data alone. We cross-correlate our data with Planck high frequency maps and find the low-$\ell$ $B$-mode power in the combined dataset to be consistent with thermal dust emission. We place an upper limit on the tensor-to-scalar ratio $r < 0.90$ at 95% confidence level after marginalizing over foregrounds.

    الوصول الحر: http://arxiv.org/abs/1910.02608Test

  7. 7
    تقرير

    المصدر: Phys. Rev. Lett. 124, 131301 (2020)

    الوصف: Using only cosmic microwave background polarization data from the POLARBEAR experiment, we measure $B$-mode polarization delensing on subdegree scales at more than $5\sigma$ significance. We achieve a 14% $B$-mode power variance reduction, the highest to date for internal delensing, and improve this result to 2% by applying for the first time an iterative maximum a posteriori delensing method. Our analysis demonstrates the capability of internal delensing as a means of improving constraints on inflationary models, paving the way for the optimal analysis of next-generation primordial $B$-mode experiments.
    Comment: Matches version published in Physical Review Letters

    الوصول الحر: http://arxiv.org/abs/1909.13832Test

  8. 8
    دورية أكاديمية

    المصدر: Astrophysical Journal. 904(1)

    الوصف: We report a measurement of the E-mode polarization power spectrum of the cosmic microwave background (CMB) using 150 GHz data taken from 2014 July to 2016 December with the POLARBEAR experiment. We reach an effective polarization map noise level of 32 mK-arcmin across an observation area of 670 square degrees. We measure the EE power spectrum over the angular multipole range 500 ≤ ℓ < 3000, tracing the third to seventh acoustic peaks with high sensitivity. The statistical uncertainty on E-mode bandpowers is ∼2.3 μK2 at ℓ ∼ 1000, with a systematic uncertainty of 0.5 mK2. The data are consistent with the standard ΛCDM cosmological model with a probability-to-exceed of 0.38. We combine recent CMB E-mode measurements and make inferences about cosmological parameters in ΛCDM as well as in extensions to ΛCDM. Adding the ground-based CMB polarization measurements to the Planck data set reduces the uncertainty on the Hubble constant by a factor of 1.2 to H0 = 67.20 ±0.57 km s- Mpc- 1 1. When allowing the number of relativistic species (Neff ) to vary, we find Neff = 2.94 ±0.16, which is in good agreement with the standard value of 3.046. Instead allowing the primordial helium abundance (YHe) to vary, the data favor YHe = 0.248 ±0.012. This is very close to the expectation of 0.2467 from big bang nucleosynthesis. When varying both YHe and Neff , we find Neff = 2.70 ±0.26 and YHe = 0.262 ±0.015.

    وصف الملف: application/pdf

  9. 9
    دورية أكاديمية

    المصدر: Astrophysical Journal. 897(1)

    الوصف: We present a measurement of the B-mode polarization power spectrum of the cosmic microwave background (CMB) using data taken from 2014 July to 2016 December with the Polarbear experiment. The CMB power spectra are measured using observations at 150 GHz with an instantaneous array sensitivity of NETarray=23μ K√s on a 670 square degree patch of sky centered at (R.A., decl.) = (+0h12m0s, -59°18′). A continuously rotating half-wave plate is used to modulate polarization and to suppress low-frequency noise. We achieve 32 μK arcmin effective polarization map noise with a knee in sensitivity of ℓ = 90, where the inflationary gravitational-wave signal is expected to peak. The measured B-mode power spectrum is consistent with a ΛCDM lensing and single dust component foreground model over a range of multipoles 50 ≤ ℓ ≤ 600. The data disfavor zero CℓBB at 2.2σ using this ℓ range of Polarbear data alone. We cross-correlate our data with Planck full mission 143, 217, and 353 GHz frequency maps and find the low-ℓ B-mode power in the combined data set to be consistent with thermal dust emission. We place an upper limit on the tensor-to-scalar ratio r < 0.90 at the 95% confidence level after marginalizing over foregrounds.

    وصف الملف: application/pdf

  10. 10
    دورية أكاديمية

    المصدر: Astrophysical Journal. 893(1)

    الوصف: We present a measurement of the gravitational lensing deflection power spectrum reconstructed with two seasons of cosmic microwave background polarization data from the Polarbear experiment. Observations were taken at 150 GHz from 2012 to 2014 and surveyed three patches of sky totaling 30 square degrees. We test the consistency of the lensing spectrum with a cold dark matter cosmology and reject the no-lensing hypothesis at a confidence of 10.9σ, including statistical and systematic uncertainties. We observe a value of A L = 1.33 ± 0.32 (statistical) ±0.02 (systematic) ±0.07 (foreground) using all polarization lensing estimators, which corresponds to a 24% accurate measurement of the lensing amplitude. Compared to the analysis of the first-year data, we have improved the breadth of both the suite of null tests and the error terms included in the estimation of systematic contamination.

    وصف الملف: application/pdf