يعرض 1 - 10 نتائج من 438 نتيجة بحث عن '"Sayers, Jack"', وقت الاستعلام: 0.71s تنقيح النتائج
  1. 1
    تقرير

    الوصف: OLIMPO is a proposed Antarctic balloon-borne Sunyaev-Zel'dovich effect (SZE) imager to study gas dynamics associated with structure formation along with the properties of the warm-hot intergalactic medium (WHIM) residing in the connective filaments. During a 25 day flight OLIMPO will image a total of 10 z~0.05 galaxy clusters and 8 bridges at 145, 250, 365, and 460 GHz at an angular resolution of 1.0'-3.3'. The maps will be significantly deeper than those planned from CMB-S4 and CCAT-P, and will have excellent fidelity to the large angular scales of our low-z targets, which are difficult to probe from the ground. In combination with X-ray data from eROSITA and XRISM we will transform our current static view of galaxy clusters into a full dynamic picture by measuring the internal intra-cluster medium (ICM) velocity structure with the kinematic SZE, X-ray spectroscopy, and the power spectrum of ICM fluctuations. Radio observations from ASKAP and MeerKAT will be used to better understand the connection between ICM turbulence and shocks with the relativistic plasma. Beyond the cluster boundary, we will combine thermal SZE maps from OLIMPO with X-ray imaging from eROSITA to measure the thermodynamics of the WHIM residing in filaments, providing a better understanding of its properties and its contribution to the total baryon budget.
    Comment: From the proceedings of the mm Universe 2023

    الوصول الحر: http://arxiv.org/abs/2404.04414Test

  2. 2
    تقرير

    الوصف: Galaxy cluster mergers are representative of a wide range of physics, making them an excellent probe of the properties of dark matter and the ionized plasma of the intracluster medium. To date, most studies have focused on mergers occurring in the plane of the sky, where morphological features can be readily identified. To allow study of mergers with arbitrary orientation, we have assembled multi-probe data for the eight-cluster ICM-SHOX sample sensitive to both morphology and line of sight velocity. The first ICM-SHOX paper (Silich+2023) provided an overview of our methodology applied to one member of the sample, MACS J0018.5+1626, in order to constrain its merger geometry. That work resulted in an exciting new discovery of a velocity space decoupling of its gas and dark matter distributions. In this work, we describe the availability and quality of multi-probe data for the full ICM-SHOX galaxy cluster sample. These datasets will form the observational basis of an upcoming full ICM-SHOX galaxy cluster sample analysis.
    Comment: 6 pages, 6 figures; published in Proc. of the mm Universe 2023 conference, EPJ Web of conferences, EDP Sciences

    الوصول الحر: http://arxiv.org/abs/2404.04379Test

  3. 3
    تقرير

    الوصف: MACS J0600.1-2008 (MACS0600) is an X-ray luminous, massive galaxy cluster at $z_{\mathrm{d}}=0.43$, studied previously as part of the REionization LensIng Cluster Survey (RELICS) and ALMA Lensing Cluster Survey (ALCS) projects which revealed a complex, bimodal mass distribution and an intriguing high-redshift object behind it. Here, we report on the results of an extended strong-lensing (SL) analysis of this system. Using new JWST and ground-based Gemini-N and Keck data, we obtain 13 new spectroscopic redshifts of multiply imaged galaxies and identify 12 new photometric multiple-image systems and candidates, including two multiply imaged $z\sim7$ objects. Taking advantage of the larger areal coverage, our analysis reveals a new bimodal, massive SL structure adjacent to the cluster which we measure spectroscopically to lie at the same redshift and whose existence was implied by previous SL-modeling analyses. While based in part on photometric systems identified in ground-based imaging requiring further verification, our extended SL model suggests that the cluster may have the second-largest critical area and effective Einstein radius observed to date, $A_{\mathrm{crit}}\simeq2.16\,\mathrm{arcmin}^2$ and $\theta_{\mathrm{E}}=49.7''\pm5.0''$ for a source at $z_{\mathrm{s}}=2$, enclosing a total mass of $M(<\theta_{\mathrm{E}})=(4.7\pm0.7)\times10^{14}\,\mathrm{M}_{\odot}$. Yet another, probably related massive cluster structure, discovered in X-rays $5'$ (1.7 Mpc) further north, suggests that MACS0600 is in fact part of an even larger filamentary structure. This discovery adds to several recent detections of massive structures around SL galaxy clusters and establishes MACS0600 as a prime target for future high-redshift surveys with JWST.
    Comment: Submitted to MNRAS. Comments welcome!

    الوصول الحر: http://arxiv.org/abs/2404.03286Test

  4. 4
    تقرير

    المصدر: Phys.Rev.Mater. 8 (2024) 035602

    الوصف: Two-level systems (TLS) are an important, if not dominant, source of loss and noise for superconducting resonators such as those used in kinetic inductance detectors and some quantum information science platforms. They are similarly important for loss in photolithographically fabricated superconducting mm-wave/THz transmission lines. For both lumped-element and transmission-line structures, native amorphous surface oxide films are typically the sites of such TLS in non-microstripline geometries, while loss in the (usually amorphous) dielectric film itself usually dominates in microstriplines. We report here on the demonstration of low TLS loss at GHz frequencies in hydrogenated amorphous silicon (a-Si:H) films deposited by plasma-enhanced chemical vapor deposition in superconducting lumped-element resonators using parallel-plate capacitors (PPCs). The values we obtain from two recipes in different deposition machines, 7$\,\times\,10^{-6}$ and 12$\,\times\,10^{-6}$, improve on the best achieved in the literature by a factor of 2--4 for a-Si:H and are comparable to recent measurements of amorphous germanium. Moreover, we have taken care to extract the true zero-temperature, low-field loss tangent of these films, accounting for temperature and field saturation effects that can yield misleading results. Such robustly fabricated and characterized films render the use of PPCs with deposited amorphous films a viable architecture for superconducting resonators, and they also promise extremely low loss and high quality factor for photolithographically fabricated superconducting mm-wave/THz transmission lines used in planar antennas and resonant filters.

    الوصول الحر: http://arxiv.org/abs/2403.03534Test

  5. 5
    تقرير

    الوصف: We present the design, fabrication, and characterization of a 100 mm diameter, flat, gradient-index (GRIN) lens fabricated with high-resistivity silicon, combined with a three-layer anti-reflection (AR) structure optimized for 160-355 GHz. Multi-depth, deep reactive-ion etching (DRIE) enables patterning of silicon wafers with sub-wavelength structures (posts or holes) to locally change the effective refractive index and thus create anti-reflection layers and a radial index gradient. The structures are non-resonant and, for sufficiently long wavelengths, achromatic. Hexagonal holes varying in size with distance from the optical axis create a parabolic index profile decreasing from 3.15 at the center of the lens to 1.87 at the edge. The AR structure consists of square holes and cross-shaped posts. We have fabricated a lens consisting of a stack of five 525 $\mu$m thick GRIN wafers and one AR wafer on each face. We have characterized the lens over the frequency range 220-330 GHz, obtaining behavior consistent with Gaussian optics down to -14 dB and transmittance between 75% and 100%.

    الوصول الحر: http://arxiv.org/abs/2401.17637Test

  6. 6
    تقرير

    الوصف: We present the optical characterization of two-scale hierarchical phased-array antenna kinetic inductance detectors (KIDs) for millimeter/submillimeter wavelengths. Our KIDs have a lumped-element architecture with parallel plate capacitors and aluminum inductors. The incoming light is received with a hierarchical phased array of slot-dipole antennas, split into 4 frequency bands (between 125 GHz and 365 GHz) with on-chip lumped-element band-pass filters, and routed to different KIDs using microstriplines. Individual pixels detect light for the 3 higher frequency bands (190-365 GHz) and the signals from four individual pixels are coherently summed to create a larger pixel detecting light for the lowest-frequency band (125-175 GHz). The spectral response of the band-pass filters was measured using Fourier transform spectroscopy (FTS), the far-field beam pattern of the phased-array antennas was obtained using an infrared source mounted on a 2-axis translating stage, and the optical efficiency of the KIDs was characterized by observing loads at 294 K and 77 K. We report on the results of these three measurements.
    Comment: 6 pages of main text, 8 pages total, 4 figures, 1 table. Presented at conference LTD20

    الوصول الحر: http://arxiv.org/abs/2401.17535Test

  7. 7
    تقرير

    الوصف: Galaxy cluster mergers are rich sources of information to test cluster astrophysics and cosmology. However, cluster mergers produce complex projected signals that are difficult to interpret physically from individual observational probes. Multi-probe constraints on the gas and dark matter cluster components are necessary to infer merger parameters that are otherwise degenerate. We present ICM-SHOX (Improved Constraints on Mergers with SZ, Hydrodynamical simulations, Optical, and X-ray), a systematic framework to jointly infer multiple merger parameters quantitatively via a pipeline that directly compares a novel combination of multi-probe observables to mock observables derived from hydrodynamical simulations. We report a first application of the ICM-SHOX pipeline to MACS J0018.5+1626, wherein we systematically examine simulated snapshots characterized by a wide range of initial parameters to constrain the MACS J0018.5+1626 merger geometry. We constrain the epoch of MACS J0018.5+1626 to the range $0$--$60$ Myr post-pericenter passage, and the viewing angle is inclined $\approx 27$--$40$ degrees from the merger axis. We obtain constraints for the impact parameter ($\lesssim 250$ kpc), mass ratio ($\approx 1.5$--$3.0$), and initial relative velocity when the clusters are separated by 3 Mpc ($\approx 1700$--3000 km s$^{-1}$). The primary and secondary clusters initially (at 3 Mpc) have gas distributions that are moderately and strongly disturbed, respectively. We discover a velocity space decoupling of the dark matter and gas distributions in MACS J0018.5+1626, traced by cluster-member galaxy velocities and the kinematic Sunyaev-Zel'dovich effect, respectively. Our simulations indicate this decoupling is dependent on the different collisional properties of the two distributions for particular merger epochs, geometries, and viewing angles.
    Comment: 40 pages, 18 figures; accepted for publication in ApJ

    الوصول الحر: http://arxiv.org/abs/2309.12533Test

  8. 8
    تقرير

    الوصف: Observational data from astronomical imaging surveys contain information about a variety of source populations and environments, and its complexity will increase substantially as telescopes become more sensitive. Even for existing observations, measuring the correlations between point-like and diffuse emission can be crucial to correctly inferring the properties of any individual component. For this task information is typically lost, either because of conservative data cuts, aggressive filtering or incomplete treatment of contaminated data. We present the code PCAT-DE, an extension of probabilistic cataloging designed to simultaneously model point-like and diffuse signals. This work incorporates both explicit spatial templates and a set of non-parametric Fourier component templates into a forward model of astronomical images, reducing the number of processing steps applied to the observed data. Using synthetic Herschel-SPIRE multiband observations, we demonstrate that point source and diffuse emission can be reliably separated and measured. We present two applications of this model. For the first, we perform point source detection/photometry in the presence of galactic cirrus and demonstrate that cosmic infrared background (CIB) galaxy counts can be recovered in cases of significant contamination. In the second we show that the spatially extended thermal Sunyaev-Zel'dovich (tSZ) effect signal can be reliably measured even when it is subdominant to the point-like emission from individual galaxies.
    Comment: 23 pages, 13 figures, Accepted for publication in The Astronomical Journal

    الوصول الحر: http://arxiv.org/abs/2307.10385Test

  9. 9
    تقرير

    المصدر: A&A 686, A97 (2024)

    الوصف: Galaxy clusters are the products of structure formation through myriad physical processes that affect their growth and evolution throughout cosmic history. As a result, the matter distribution within galaxy clusters, or their shape, is influenced by cosmology and astrophysical processes, in particular the accretion of new material due to gravity. We introduce an analysis method to investigate the 3D triaxial shapes of galaxy clusters from the Cluster HEritage project with XMM-Newton -- Mass Assembly and Thermodynamics at the Endpoint of structure formation (CHEX-MATE). In this work, the first paper of a CHEX-MATE triaxial analysis series, we focus on utilizing X-ray data from XMM and Sunyaev-Zel'dovich (SZ) effect maps from Planck and ACT to obtain a three dimensional triaxial description of the intracluster medium (ICM) gas. We present the forward modeling formalism of our technique, which projects a triaxial ellipsoidal model for the gas density and pressure to compare directly with the observed two dimensional distributions in X-rays and the SZ effect. A Markov chain Monte Carlo is used to estimate the posterior distributions of the model parameters. Using mock X-ray and SZ observations of a smooth model, we demonstrate that the method can reliably recover the true parameter values. In addition, we apply the analysis to reconstruct the gas shape from the observed data of one CHEX-MATE galaxy cluster, Abell 1689, to illustrate the technique. The inferred parameters are in agreement with previous analyses for that cluster, and our results indicate that the geometrical properties, including the axial ratios of the ICM distribution, are constrained to within a few percent. With much better precision than previous studies, we thus further establish that Abell 1689 is significantly elongated along the line of sight, resulting in its exceptional gravitational lensing properties.
    Comment: accepted for publication in A&A

    الوصول الحر: http://arxiv.org/abs/2307.04794Test

  10. 10
    تقرير

    مصطلحات موضوعية: Astrophysics - Astrophysics of Galaxies

    الوصف: The distribution of baryons provides a significant way to understand the formation of galaxy clusters by revealing the details of its internal structure and changes over time. In this paper, we present theoretical studies on the scaled profiles of physical properties associated with the baryonic components, including gas density, temperature, metallicity, pressure and entropy as well as stellar mass, metallicity and satellite galaxy number density in galaxy clusters from $z=4$ to $z=0$ by tracking their progenitors. These mass-complete simulated galaxy clusters are coming from THE THREE HUNDRED with two runs: GIZMO-SIMBA and Gadget-X. Through comparisons between the two simulations, and with observed profiles which are generally available at low redshift, we find that (1) the agreements between the two runs and observations are mostly at outer radii $r \gtrsim 0.3r_{500}$, in line with the self-similarity assumption. While Gadget-X shows better agreements with the observed gas profiles in the central regions compared to GIZMO-SIMBA; (2) the evolution trends are generally consistent between the two simulations with slightly better consistency at outer radii. In detail, the gas density profile shows less discrepancy than the temperature and entropy profiles at high redshift. The differences in the cluster centre and gas properties imply different behaviours of the AGN models between Gadget-X and GIZMO-SIMBA, with the latter, maybe too strong for this cluster simulation. The high-redshift difference may be caused by the star formation and feedback models or hydrodynamics treatment, which requires observation constraints and understanding.
    Comment: 20 pages, 20 figures, accepted in MNRAS

    الوصول الحر: http://arxiv.org/abs/2305.09629Test