يعرض 1 - 10 نتائج من 396 نتيجة بحث عن '"Romano, Vincenzo"', وقت الاستعلام: 0.86s تنقيح النتائج
  1. 1
    تقرير

    المصدر: 21st ACM International Conference on Computing Frontiers Proceedings, 2024

    الوصف: Electrophysiological recordings of neural activity in a mouse's brain are very popular among neuroscientists for understanding brain function. One particular area of interest is acquiring recordings from the Purkinje cells in the cerebellum in order to understand brain injuries and the loss of motor functions. However, current setups for such experiments do not allow the mouse to move freely and, thus, do not capture its natural behaviour since they have a wired connection between the animal's head stage and an acquisition device. In this work, we propose a lightweight neuronal-spike detection and classification architecture that leverages on the unique characteristics of the Purkinje cells to discard unneeded information from the sparse neural data in real time. This allows the (condensed) data to be easily stored on a removable storage device on the head stage, alleviating the need for wires. Synthesis results reveal a >95% overall classification accuracy while still resulting in a small-form-factor design, which allows for the free movement of mice during experiments. Moreover, the power-efficient nature of the design and the usage of STT-RAM (Spin Transfer Torque Magnetic Random Access Memory) as the removable storage allows the head stage to easily operate on a tiny battery for up to approximately 4 days.

    الوصول الحر: http://arxiv.org/abs/2311.04808Test

  2. 2
    دورية أكاديمية

    المصدر: Instrumentation viewpoint; 2016: Núm.: 19

    الوصف: The paper describes a new electronic device that allows an easily measurement of the drift between a reference time source (usually GPS) and an atomic rubidium clock which is normally used in seafloor observatories. The Rubidium clock is used in autonomous seafloor observatories to supply reference time for data acquisition with the precision of milliseconds. During the deployment of seafloor observatory the clock is synchronized with GPS. It is critical to evaluate the time drift between the clock and the GPS, when the observatory is recovered. In fact, thanks to an accurate drift measurement it’s possible to have a correct timestamp for data series collected by seafloor observatory’s instruments. The device described in this paper is composed by an Arduino mega shield integrated with other electronic circuits. The device is easily customizable for different clocks in fact Arduino IDE allows development of the desired features for the rubidium clock used in the specific application.

    وصف الملف: text/html

  3. 3
    دورية أكاديمية

    المصدر: Zhai , P , Romano , V , Soggia , G , Bauer , S , van Wingerden , N , Jacobs , T , van der Horst , A , White , J J , Mazza , R & De Zeeuw , C I 2024 , ' Whisker kinematics in the cerebellum ' , Journal of Physiology , vol. 602 , no. 1 , pp. 153-181 . https://doi.org/10.1113/JP284064Test

    الوصف: The whisker system is widely used as a model system for understanding sensorimotor integration. Purkinje cells in the crus regions of the cerebellum have been reported to linearly encode whisker midpoint, but it is unknown whether the paramedian and simplex lobules as well as their target neurons in the cerebellar nuclei also encode whisker kinematics and if so which ones. Elucidating how these kinematics are represented throughout the cerebellar hemisphere is essential for understanding how the cerebellum coordinates multiple sensorimotor modalities. Exploring the cerebellar hemisphere of mice using optogenetic stimulation, we found that whisker movements can be elicited by stimulation of Purkinje cells in not only crus1 and crus2, but also in the paramedian lobule and lobule simplex; activation of cells in the medial paramedian lobule had on average the shortest latency, whereas that of cells in lobule simplex elicited similar kinematics as those in crus1 and crus2. During spontaneous whisking behaviour, simple spike activity correlated in general better with velocity than position of the whiskers, but it varied between protraction and retraction as well as per lobule. The cerebellar nuclei neurons targeted by the Purkinje cells showed similar activity patterns characterized by a wide variety of kinematic signals, yet with a dominance for velocity. Taken together, our data indicate that whisker movements are much more prominently and diversely represented in the cerebellar cortex and nuclei than assumed, highlighting the rich repertoire of cerebellar control in the kinematics of movements that can be engaged during coordination. (Figure presented.). Key points: Excitation of Purkinje cells throughout the cerebellar hemispheres induces whisker movement, with the shortest latency and longest duration within the paramedian lobe. Purkinje cells have differential encoding for the fast and slow components of whisking. Purkinje cells encode not only the position but also the velocity of whiskers. Purkinje cells with ...

    وصف الملف: application/pdf

  4. 4
    دورية أكاديمية

    المساهمون: #PLACEHOLDER_PARENT_METADATA_VALUE#, Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione Roma2, Roma, Italia

    الوصف: It is well known that space weather can cause significant disruptions to modern communications and navigation systems, leading to increased safety risks, economic losses, and reduced quality of life. Operators of critical infrastructures (both national and international) are also increasingly aware that extreme space-weather events can have severe impacts on their systems. For example, strong ionospheric disturbances can degrade, and sometimes deny access to satellite positioning, navigation, and timing services, central to the operation of many infrastructures. The mitigation of the effects of space weather on technical systems on the ground and in space, and the development of possible protective measures, are therefore of essential importance. We discuss how space weather drives a wide variety of ionospheric phenomena that can disrupt communications and navigation systems and how scientific understanding can help us to mitigate those effects. We also provide recommendations on further research and collaboration with industrial and governmental partners, which are essential for the development and operation of space weather services. ; In press ; OSA3: Climatologia e meteorologia spaziale ; JCR Journal

    العلاقة: Advances in Space Research; http://hdl.handle.net/2122/16794Test

  5. 5
    مؤتمر

    المساهمون: Mehr, Iman Ebrahimi, Minetto, Alex, Dovis, Fabio, Pica, Emanuele, Cesaroni, Claudio, Romano, Vincenzo

    الوصف: Signal monitoring and recording station architectures based on software-defined radio (SDR) have been proposed and implemented since several years. However, the large amount of data to be transferred, stored, and managed when high sampling frequency and high quantization depth are required, poses a limit to the performance, mostly because of the data losses during the data transfer between the front-end and the storage unit. To overcome these limitations, thus allowing a reliable, high-fidelity recording of the signals as required by some applications, a novel architecture named SMART (Signal Monitoring, Analysis and Recording Tool) based on the implementation of Docker containers directly on a Network Attached Storage (NAS) unit is presented. Such paradigms allow for a fully open-source system being more affordable and flexible than previous prototypes. The proposed architecture reduces computational complexity, increases efficiency, and provides a compact, cost-effective system that is easy to move and deploy. As a case study, this architecture is implemented to monitor Radio-Frequency Interferences (RFI) on Global Navigation Satellite System (GNSS) L1/E1 and L5/E5 bands. The sample results show the benefits of a stable, long-term capture at a high sampling frequency to characterize the RFIs spectral signature effectively.

    وصف الملف: ELETTRONICO

    العلاقة: info:eu-repo/semantics/altIdentifier/isbn/978-1-6654-6397-3; ispartofbook:IEEE EUROCON 2023; IEEE EUROCON 2023 - 20th International Conference on Smart Technologies; firstpage:66; lastpage:71; numberofpages:6; https://hdl.handle.net/11583/2981046Test; info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85168676353; https://ieeexplore.ieee.org/document/10199078Test

  6. 6
    رسالة جامعية

    المؤلفون: Romano, Vincenzo

    مصطلحات موضوعية: 623.89, TL Motor vehicles. Aeronautics. Astronautics

    الوصف: The increasing importance of satellite navigation technologies in modern society implies that a deeper knowledge and a reliable monitoring of the scintillation phenomena are essential to warn and forecast information to the end users and system designers. In fact, warnings, alerts and forecasting of ionospheric conditions may wisely tune the development of GNSS-based services to obtain the necessary levels of accuracy, integrity, and immediacy for reliable life-critical applications. The PhD research project is within the framework of the longstanding NGI-INGV collaboration, increasingly consolidated in the framework of many international projects. NGI pioneered GPS ionospheric scintillation monitoring in Northern Europe with GISTM (GPS ionospheric scintillation and TEC monitor, Van Dierendonck et al., 1993; Van Dierendonck, 2001) receivers. Between June 2001 and December 2003, four units were installed in the UK and Norway mainland, covering the geographic latitudes from 53° N to 70° N. Data was stored and analysed, focusing on statistical analyses and impact for GNSS users (Rodrigues et al., 2004, Aquino et al., 2005a, Aquino et al., 2005b). These units were decommissioned in 2004 and, then, re-deployed together with additional new receivers, in UK, Norway, Italy and Cyprus. An additional station was deployed by the NGI in Dourbes, Belgium (in collaboration with the Royal Meteorological Institute of Belgium) between 2006 and 2011. INGV leads the ISACCO (Ionospheric Scintillation Arctic Campaign Coordinated Observations) project in the Arctic, started in 2003, in which frame the management of three GISTM receivers in Svalbard (De Franceschi et al., 2006) and another two at European mid-latitudes, Chania (Greece) and Lampedusa (Italy), is currently undertaken. The PhD research project contributed to the reinforcement of the NGI-INGV GISTM network developing monitoring, data management and quality tools. Such activities have supported the continuity and the control of the receiving stations, as well as the access and the preservation of the both real-time and historical data acquired. In fact, a robust, continuous data acquisition and a wise management of the GISTM network are of paramount importance for Space Weather applications, as they are the basis on which reliable forecasting and now-casting of possible effects on technological systems lean. Moreover, the possibility to use the data for scientific and applicative purposes depends upon well-established data quality procedures and upon a detailed knowledge of the sites in which each receiver comprising the network are deployed. Starting from these considerations, and in the framework of the aforementioned collaborative context, the PhD work aimed at improving the monitoring techniques and developing novel data processing to improve the data quality. Scintillation measurements are contaminated by multiple scattering encountered by the GNSS signal due to buildings, trees, etc. Such multipath sources need to be identified to keep the quality of the scintillation and TEC data as higher as possible. This can be achieved by removing these sources of errors or mitigating their effects by filtering the data. A novel station characterization technique has been introduced, developed and discussed in this thesis. The results demonstrated that this is a promising method to improve the quality of data (Romano et. al 2013). The results obtained so far motivated the development of the data filtering procedures. The filtering was aimed at filtering-out spurious, noisy data based on general assumptions about statistical data analysis (outlier analysis), thus efficiently removing multipath affected measurements and reducing the data loss with respect to applying a fixed elevation angle cut-off threshold. This is particularly important in case of not well covered regions (e.g. forests, deserts, oceans, etc.), as the field of view spanned by each antenna is optimized. During the PhD activities, the filtering technique has been also tested and validated against real and simulated data. To show how the development of the filtering method is able to efficiently clean multipath and signal degradation from GNSS data, it was applied in two different cases: - First, it was applied to the data published in a climatological study (Alfonsi et al. 2011), carried out with the NGI-INGV GISTM network at high-latitudes. Each station was characterized using the station characterization method, and then the data were filtered using the filtering method. Then, the new climatological maps were generated and compared to the original ones. The percentage of the filtered-out data obtained by applying the standard threshold of 20° on the elevation angle and the filtering technique for each station demonstrated how the latter is able to meaningfully reduce the data loss. The filtering extends the field of view of the network and, then, improves the capability of investigating the dynamics of the ionosphere over larger areas. - Second, the data used in this application were acquired by the CIGALA/CALIBRA network of PolaRxS receivers during the whole year of 2012. The elevation angle cut-off significantly reduced the capability of the network to depict the ionosphere northward of the geomagnetic equator and above the Atlantic Ocean, east of Brazil. This approach limited the data loss to 10-20%, while the traditional cut off of 15°-30° on the elevation angle led to losses of 35-45%. This method not only optimized the capability of GNSS networks, but also helped in planning the installation of additional new receivers aiming to enlarge network coverage in the framework of the CALIBRA project. The enlarged field of view made it possible to identify the increased occurrence of scintillation along the northern crest of the Equatorial Ionospheric Anomaly (EIA). To summarize and to introduce the reader into this thesis, specific issues here addressed are: - Development of software procedures and hardware designs to optimize the station configurations of the existing measurement network of GISTM (GPS Ionospheric Scintillation and TEC Monitor). - Development of techniques for remote, automatic instrument control and setting. - Development of data management tools to achieve quasi real-time data accessibility. - Development of data analysis methods to assess station characterization. - Development of techniques to perform data quality filtering. - Perform acquisition of experimental and simulation data. - Support scientific investigations through the high quality of the NGI-INGV network data.

  7. 7
    دورية أكاديمية

    المصدر: Loyola , S , Hoogland , T M , Hoedemaker , H , Romano , V , Negrello , M & De Zeeuw , C I 2023 , ' How inhibitory and excitatory inputs gate output of the inferior olive ' , eLife , vol. 12 , e83239 . https://doi.org/10.7554/eLife.83239Test

    الوصف: The inferior olive provides the climbing fibers to Purkinje cells in the cerebellar cortex, where they elicit all-or-none complex spikes and control major forms of plasticity. Given their important role in both short-term and long-term coordination of cerebellum-dependent behaviors, it is paramount to understand the factors that determine the output of olivary neurons. Here, we use mouse models to investigate how the inhibitory and excitatory inputs to the olivary neurons interact with each other, generating spiking patterns of olivary neurons that align with their intrinsic oscillations. Using dual color optogenetic stimulation and whole-cell recordings, we demonstrate how intervals between the inhibitory input from the cerebellar nuclei and excitatory input from the mesodiencephalic junction affect phase and gain of the olivary output at both the sub- and suprathreshold level. When the excitatory input is activated shortly (~50 ms) after the inhibitory input, the phase of the intrinsic oscillations becomes remarkably unstable and the excitatory input can hardly generate any olivary spike. Instead, when the excitatory input is activated one cycle (~150 ms) after the inhibitory input, the excitatory input can optimally drive olivary spiking, riding on top of the first cycle of the subthreshold oscillations that have been powerfully reset by the preceding inhibitory input. Simulations of a large-scale network model of the inferior olive highlight to what extent the synaptic interactions penetrate in the neuropil, generating quasi-oscillatory spiking patterns in large parts of the olivary subnuclei, the size of which also depends on the relative timing of the inhibitory and excitatory inputs.

    وصف الملف: application/pdf

  8. 8
    دورية أكاديمية

    المساهمون: Maanmittauslaitos, National Land Survey of Finland

    الوصف: We aim at contributing to the reliability of the phase scintillation index on Global Navigation Satellite System (GNSS) signals at high-latitude. To the scope, we leverage on a recently introduced detrending scheme based on the signal decomposition provided by the fast iterative filtering (FIF) technique. This detrending scheme has been demonstrated to enable a fine-tuning of the cutoff frequency for phase detrending used in the phase scintillation index definition. In a single case study based on Galileo data taken by a GNSS ionospheric scintillation monitor receiver (ISMR) in Concordia Station (Antarctica), we investigate how to step ahead of the cutoff frequency optimization. We show how the FIF-based detrending allows deriving adaptive cutoff frequencies, whose value changes minute-by-minute. They are found to range between 0.4 and 1.2 Hz. This allows better accounting for diffractive effects in phase scintillation index calculation and provides a GNSS-based estimation of the relative velocity between satellite and ionospheric irregularities.

    وصف الملف: application/pdf

    العلاقة: IEEE geoscience and remote sensing letters; 19; 56809; http://hdl.handle.net/10138/356663Test; URN:NBN:fi-fe2023032933713

  9. 9
    دورية أكاديمية

    المساهمون: China Scholarship Council

    المصدر: The Journal of Physiology ; volume 602, issue 1, page 153-181 ; ISSN 0022-3751 1469-7793

    الوصف: The whisker system is widely used as a model system for understanding sensorimotor integration. Purkinje cells in the crus regions of the cerebellum have been reported to linearly encode whisker midpoint, but it is unknown whether the paramedian and simplex lobules as well as their target neurons in the cerebellar nuclei also encode whisker kinematics and if so which ones. Elucidating how these kinematics are represented throughout the cerebellar hemisphere is essential for understanding how the cerebellum coordinates multiple sensorimotor modalities. Exploring the cerebellar hemisphere of mice using optogenetic stimulation, we found that whisker movements can be elicited by stimulation of Purkinje cells in not only crus1 and crus2, but also in the paramedian lobule and lobule simplex; activation of cells in the medial paramedian lobule had on average the shortest latency, whereas that of cells in lobule simplex elicited similar kinematics as those in crus1 and crus2. During spontaneous whisking behaviour, simple spike activity correlated in general better with velocity than position of the whiskers, but it varied between protraction and retraction as well as per lobule. The cerebellar nuclei neurons targeted by the Purkinje cells showed similar activity patterns characterized by a wide variety of kinematic signals, yet with a dominance for velocity. Taken together, our data indicate that whisker movements are much more prominently and diversely represented in the cerebellar cortex and nuclei than assumed, highlighting the rich repertoire of cerebellar control in the kinematics of movements that can be engaged during coordination. image Key points Excitation of Purkinje cells throughout the cerebellar hemispheres induces whisker movement, with the shortest latency and longest duration within the paramedian lobe. Purkinje cells have differential encoding for the fast and slow components of whisking. Purkinje cells encode not only the position but also the velocity of whiskers. Purkinje cells with high ...

  10. 10
    دورية أكاديمية