يعرض 1 - 10 نتائج من 505 نتيجة بحث عن '"Rich, Jeffrey"', وقت الاستعلام: 1.06s تنقيح النتائج
  1. 1
    تقرير

    مصطلحات موضوعية: Astrophysics - Astrophysics of Galaxies

    الوصف: The enormous increase in mid-IR sensitivity and spatial and spectral resolution provided by the JWST spectrographs enables, for the first time, detailed extragalactic studies of molecular vibrational bands. This opens an entirely new window for the study of the molecular interstellar medium in luminous infrared galaxies (LIRGs). We present a detailed analysis of rovibrational bands of gas-phase CO, H$_2$O, C$_2$H$_2$ and HCN towards the heavily-obscured eastern nucleus of the LIRG VV 114, as observed by NIRSpec and MIRI MRS. Spectra extracted from apertures of 130 pc in radius show a clear dichotomy between the obscured AGN and two intense starburst regions. We detect the 2.3 $\mu$m CO bandheads, characteristic of cool stellar atmospheres, in the star-forming regions, but not towards the AGN. Surprisingly, at 4.7 $\mathrm{\mu}$m we find highly-excited CO ($T_\mathrm{ex} \approx 700-800$ K out to at least rotational level $J = 27$) towards the star-forming regions, but only cooler gas ($T_\mathrm{ex} \approx 200$ K) towards the AGN. We conclude that only mid-infrared pumping through the rovibrational lines can account for the equilibrium conditions found for CO and H$_2$O in the deeply-embedded starbursts. Here the CO bands probe regions with an intense local radiation field inside dusty young massive star clusters or near the most massive young stars. The lack of high-excitation molecular gas towards the AGN is attributed to geometric dilution of the intense radiation from the bright point source. An overview of the relevant excitation and radiative transfer physics is provided in an appendix.
    Comment: 28 pages, 17 figures. Accepted for publication in ApJ. This version includes small revisions following the referee report

    الوصول الحر: http://arxiv.org/abs/2312.01945Test

  2. 2
    تقرير

    مصطلحات موضوعية: Astrophysics - Astrophysics of Galaxies

    الوصف: We analyze TYPHOON long slit absorption line spectra of the starburst barred spiral galaxy NGC 1365 obtained with the Progressive Integral Step Method covering an area of 15 square kpc. Applying a population synthesis technique, we determine the spatial distribution of ages and metallicity of the young and old stellar population together with star formation rates, reddening, extinction and the ratio R$_V$ of extinction to reddening. We detect a clear indication of inside-out growth of the stellar disk beyond 3 kpc characterized by an outward increasing luminosity fraction of the young stellar population, a decreasing average age and a history of mass growth, which was finished 2 Gyrs later in the outermost disk. The metallicity of the young stellar population is clearly super solar but decreases towards larger galactocentric radii with a gradient of -0.02 dex/kpc. On the other hand, the metal content of the old population does not show a gradient and stays constant at a level roughly 0.4 dex lower than that of the young population. In the center of NGC 1365 we find a confined region where the metallicity of the young population drops dramatically and becomes lower than that of the old population. We attribute this to infall of metal poor gas and, additionally, to interrupted chemical evolution where star formation is stopped by AGN and supernova feedback and then after several Gyrs resumes with gas ejected by stellar winds from earlier generations of stars. We provide a simple model calculation as support for the latter.

    الوصول الحر: http://arxiv.org/abs/2311.01140Test

  3. 3
    تقرير

    مصطلحات موضوعية: Astrophysics - Astrophysics of Galaxies

    الوصف: Dust grains absorb half of the radiation emitted by stars throughout the history of the universe, re-emitting this energy at infrared wavelengths. Polycyclic aromatic hydrocarbons (PAHs) are large organic molecules that trace millimeter-size dust grains and regulate the cooling of the interstellar gas within galaxies. Observations of PAH features in very distant galaxies have been difficult due to the limited sensitivity and wavelength coverage of previous infrared telescopes. Here we present JWST observations that detect the 3.3um PAH feature in a galaxy observed less than 1.5 billion years after the Big Bang. The high equivalent width of the PAH feature indicates that star formation, rather than black hole accretion, dominates the infrared emission throughout the galaxy. The light from PAH molecules, large dust grains, and stars and hot dust are spatially distinct from one another, leading to order-of-magnitude variations in the PAH equivalent width and the ratio of PAH to total infrared luminosity across the galaxy. The spatial variations we observe suggest either a physical offset between the PAHs and large dust grains or wide variations in the local ultraviolet radiation field. Our observations demonstrate that differences in the emission from PAH molecules and large dust grains are a complex result of localized processes within early galaxies.
    Comment: Published in Nature 5 June 2023 at https://www.nature.com/articles/s41586-023-05998-6Test. MIRI MRS reduction notebook is available at https://github.com/jwst-templatesTest

    الوصول الحر: http://arxiv.org/abs/2306.03152Test

  4. 4
    دورية أكاديمية

    مرشدي الرسالة: Univ Arizona, Steward Observ

    الوصف: We investigate the optical and Wide-field Survey Explorer (WISE) colors of "E+A" identified post-starburst galaxies, including a deep analysis of 190 post-starbursts detected in the 2 mu m All Sky Survey Extended Source Catalog. The post-starburst galaxies appear in both the optical green valley and the WISE Infrared Transition Zone. Furthermore, we find that post-starbursts occupy a distinct region of [3.4]-[4.6] versus [4.6]-[12] WISE colors, enabling the identification of this class of transitioning galaxies through the use of broadband photometric criteria alone. We have investigated possible causes for the WISE colors of post-starbursts by constructing a composite spectral energy distribution (SED), finding that the mid-infrared (4-12 mu m) properties of post-starbursts are consistent with either 11.3 mu m polycyclic aromatic hydrocarbon emission, or thermally pulsating asymptotic giant branch (TP-AGB) and post-AGB stars. The composite SED of extended post-starburst galaxies with 22 mu m emission detected with signal-to-noise ratio >= 3 requires a hot dust component to produce their observed rising mid-infrared SED between 12 and 22 mu m. The composite SED of WISE. 22 mu m non-detections (S/N < 3), created by stacking 22 mu m images, is also flat, requiring a hot dust component. The most likely source of the mid-infrared emission of these E+A galaxies is a buried active galactic nucleus (AGN). The inferred upper limits to the Eddington ratios of post-starbursts are 10(-2)-10(-4), with an average of 10(-3). This suggests that AGNs are not radiatively dominant in these systems. This could mean that including selections capable of identifying AGNs as part of a search for transitioning and post-starburst galaxies would create a more complete census of the transition pathways taken as a galaxy quenches its star formation.

  5. 5
    دورية أكاديمية

    المصدر: The Astrophysical Journal. 946(1)

    الوصف: SN 2018aoz is a Type Ia SN with a B-band plateau and excess emission in infant-phase light curves ≲1 day after the first light, evidencing an over-density of surface iron-peak elements as shown in our previous study. Here, we advance the constraints on the nature and origin of SN 2018aoz based on its evolution until the nebular phase. Near-peak spectroscopic features show that the SN is intermediate between two subtypes of normal Type Ia: core normal and broad line. The excess emission may be attributable to the radioactive decay of surface iron-peak elements as well as the interaction of ejecta with either the binary companion or a small torus of circumstellar material. Nebular-phase limits on Hα and He i favor a white dwarf companion, consistent with the small companion size constrained by the low early SN luminosity, while the absence of [O i] and He i disfavors a violent merger of the progenitor. Of the two main explosion mechanisms proposed to explain the distribution of surface iron-peak elements in SN 2018aoz, the asymmetric Chandrasekhar-mass explosion is less consistent with the progenitor constraints and the observed blueshifts of nebular-phase [Fe ii] and [Ni ii]. The helium-shell double-detonation explosion is compatible with the observed lack of C spectral features, but current 1D models are incompatible with the infant-phase excess emission, B max - V max color, and weak strength of nebular-phase [Ca ii]. Although the explosion processes of SN 2018aoz still need to be more precisely understood, the same processes could produce a significant fraction of Type Ia SNe that appear to be normal after ∼1 day.

    وصف الملف: application/pdf

  6. 6
    تقرير

    مصطلحات موضوعية: Astrophysics - Astrophysics of Galaxies

    الوصف: We present the results of a {\it James Webb Space Telescope} NIRCam investigation into the young massive star cluster (YMC) population in the luminous infrared galaxy VV 114. We identify 374 compact YMC candidates with a $S/N \geq 3$, 5, and 5 at F150W, F200W, and F356W respectively. A direct comparison with our {\it HST} cluster catalog reveals that $\sim 20\%$ of these sources are undetected at optical wavelengths. Based on {\it yggdrasil} stellar population models, we identify 17 YMC candidates in our {\it JWST} imaging alone with F150W-F200W and F200W-F356W colors suggesting they are all very young, dusty ($A_{V} = 5 - 15$), and massive ($10^{5.8} < M_{\odot} < 10^{6.1}$). The discovery of these `hidden' sources, many of which are found in the `overlap' region between the two nuclei, quadruples the number of $t < 3$ Myr clusters, and nearly doubles the number of $t < 6$ Myr clusters detected in VV 114. Now extending the cluster age distribution ($dN/d\tau \propto \tau^{\gamma}$) to the youngest ages, we find a slope of $\gamma = -1.30 \pm 0.39$ for $10^{6} < \tau (\mathrm{yr}) < 10^{7}$, which is consistent with the previously determined value from $10^{7} < \tau (\mathrm{yr}) < 10^{8.5}$, and confirms that VV 114 has a steep age distribution slope for all massive star clusters across the entire range of cluster ages observed. Finally, the consistency between our {\it JWST}- and {\it HST}-derived age distribution slopes indicates that the balance between cluster formation and destruction has not been significantly altered in VV 114 over the last 0.5 Gyr.
    Comment: 13 pages, 4 figures, 1 table, published in the Astrophysical Journal

    الوصول الحر: http://arxiv.org/abs/2210.05763Test

  7. 7
    تقرير

    مصطلحات موضوعية: Astrophysics - Astrophysics of Galaxies

    الوصف: We present James Webb Space Telescope (JWST) imaging of NGC 7469 with the Near-Infrared Camera (NIRCam) and the Mid-InfraRed Instrument (MIRI). NGC 7469 is a nearby, $z=0.01627$, luminous infrared galaxy (LIRG) that hosts both a Seyfert Type-1.5 nucleus and a circumnuclear starburst ring with a radius of $\sim$0.5 kpc. The new near-infrared (NIR) JWST imaging reveals 66 star-forming regions, 37 of which were not detected by HST observations. Twenty-eight of the 37 sources have very red NIR colors that indicate obscurations up to A$_{\rm{v}}\sim7$ and a contribution of at least 25$\%$ from hot dust emission to the 4.4$\mu$m band. Their NIR colors are also consistent with young ($<$5 Myr) stellar populations and more than half of them are coincident with the MIR emission peaks. These younger, dusty star-forming regions account for $\sim$6$\%$ and $\sim$17$\%$ of the total 1.5$\mu$m and 4.4$\mu$m luminosity of the starburst ring, respectively. Thanks to JWST, we find a significant number of young dusty sources that were previously unseen due to dust extinction. The newly identified 28 young sources are a significant increase compared to the number of HST-detected young sources (4-5). This makes the total percentage of the young population rise from $\sim$15$\%$ to 48$\%$. These results illustrate the effectiveness of JWST in identifying and characterizing previously hidden star formation in the densest star-forming environments around AGN.
    Comment: 4 figures, 1 table, Accepted by ApJL

    الوصول الحر: http://arxiv.org/abs/2209.04466Test

  8. 8
    تقرير

    مصطلحات موضوعية: Astrophysics - Astrophysics of Galaxies

    الوصف: James Webb Space Telescope (JWST) Mid-InfraRed Instrument (MIRI) images of the luminous infrared (IR) galaxy VV 114 are presented. This redshift ~ 0.020 merger has a western component (VV 114W) rich in optical star clusters and an eastern component (VV 114E) hosting a luminous mid-IR nucleus hidden at UV and optical wavelengths by dust lanes. With MIRI, the VV 114E nucleus resolves primarily into bright NE and SW cores separated by 630 pc. This nucleus comprises 45% of the 15um light of VV 114, with the NE and SW cores having IR luminosities, L_ IR (8-1000um) ~ 8+/-0.8x10^10 L_sun and ~ 5+/-0.5x10^10 L_sun, respectively, and IR densities, Sigma_IR >~ 2+/-0.2x10^13 L_sun / kpc^2 and >~ 7+/-0.7x10^12 L_sun / kpc^2, respectively -- in the range of Sigma_IR for the Orion star-forming core and the nuclei of Arp 220. The NE core, previously speculated to have an Active Galactic Nucleus (AGN), has starburst-like mid-IR colors. In contrast, the VV 114E SW has AGN-like colors. Approximately 40 star-forming knots with L_IR ~ 0.02-5x10^10 L_sun are identified, 25% of which have no optical counterpart. Finally, diffuse emission accounts for 40-60% of the mid-IR emission. Mostly notably, filamentary Poly-cyclic Aromatic Hydrocarbon (PAH) emission stochastically excited by UV and optical photons accounts for half of the 7.7um light of VV 114. This study illustrates the ability of JWST to detect obscured compact activity and distributed PAH emission in the most extreme starburst galaxies in the local Universe.
    Comment: 8 pages, 4 figures, 1 table, Submitted to ApJL

    الوصول الحر: http://arxiv.org/abs/2208.14507Test

  9. 9
    تقرير

    مصطلحات موضوعية: Astrophysics - Astrophysics of Galaxies

    الوصف: We have used the Mid-InfraRed Instrument (MIRI) on the James Webb Space Telescope (JWST) to obtain the first spatially resolved, mid-infrared (mid-IR) images of IIZw096, a merging luminous infrared galaxy (LIRG) at $z = 0.036$. Previous observations with the Spitzer Space Telescope suggested that the vast majority of the total IR luminosity (LIR) of the system originated from a small region outside of the two merging nuclei. New observations with JWST/MIRI now allow an accurate measurement of the location and luminosity density of the source that is responsible for the bulk of the IR emission. We estimate that 40-70% of the IR bolometric luminosity, or $3-5 \times 10^{11}\,{\rm{L_{\odot}}}$, arises from a source no larger than 175pc in radius, suggesting a luminosity density of at least $3-5 \times 10^{12} \, {\rm{L_{\odot} \, kpc^{-2}}}$. In addition, we detect 11 other star forming sources, five of which were previously unknown. The MIRI F1500W/F560W colors of most of these sources, including the source responsible for the bulk of the far-IR emission, are much redder than the nuclei of local LIRGs. These observations reveal the power of JWST to disentangle the complex regions at the hearts of merging, dusty galaxies.
    Comment: 3 figures, 1 table, Accepted for publication in ApJL

    الوصول الحر: http://arxiv.org/abs/2208.10647Test

  10. 10
    تقرير

    الوصف: SN~2018aoz is a Type Ia SN with a $B$-band plateau and excess emission in the infant-phase light curves $\lesssim$ 1 day after first light, evidencing an over-density of surface iron-peak elements as shown in our previous study. Here, we advance the constraints on the nature and origin of SN~2018aoz based on its evolution until the nebular phase. Near-peak spectroscopic features show the SN is intermediate between two subtypes of normal Type Ia: Core-Normal and Broad-Line. The excess emission could have contributions from the radioactive decay of surface iron-peak elements as well as ejecta interaction with either the binary companion or a small torus of circumstellar material. Nebular-phase limits on H$\alpha$ and He~I favour a white dwarf companion, consistent with the small companion size constrained by the low early SN luminosity, while the absence of [O~I] and He~I disfavours a violent merger of the progenitor. Of the two main explosion mechanisms proposed to explain the distribution of surface iron-peak elements in SN~2018aoz, the asymmetric Chandrasekhar-mass explosion is less consistent with the progenitor constraints and the observed blueshifts of nebular-phase [Fe~II] and [Ni~II]. The helium-shell double-detonation explosion is compatible with the observed lack of C spectral features, but current 1-D models are incompatible with the infant-phase excess emission, $B_{\rm max}-V_{\rm max}$ color, and absence of nebular-phase [Ca~II]. Although the explosion processes of SN~2018aoz still need to be more precisely understood, the same processes could produce a significant fraction of Type Ia SNe that appear normal after $\sim$ 1 day.
    Comment: Submitted for publication in ApJ. 35 pages, 16 figures, 7 tables

    الوصول الحر: http://arxiv.org/abs/2206.12437Test