يعرض 11 - 20 نتائج من 45 نتيجة بحث عن '"Quan Bing Zhang"', وقت الاستعلام: 0.87s تنقيح النتائج
  1. 11

    مصطلحات موضوعية: genetic structures

    الوصف: Background: The aim of this study was to investigate the therapeutic effect of electrical stimulation on disuse muscular atrophy in a rabbit model of knee joint contracture and explore the role of endoplasmic reticulum stress-induced Parkin-dependent mitophagy in this process.Methods: Two sub-experiments were carried out successively in our study. In the first sub-experiment, 24 rabbits were divided into four groups on average based on the immobilization time: Ctrl 1, I-2, I-4, and I-6 groups. In the second sub-experiment, 24 rabbits were also divided into four groups on average in accordance with the process mode: Ctrl2, ES, NR, and EST groups. To test the time-dependent changes of the rectus femoris muscles after immobilization in rabbits, and to evaluate the effect of electrical stimulation on the atrophic rectus femoris muscles, the wet weights of rectus femoris muscles were assessed in this study, along with the protein levels of atrogin-1, p-PERK, Parkin and COXIV.Results: The wet weights of rectus femoris muscles, the protein levels of atrogin-1, p-PERK and Parkin increased after immobilization. It was also revealed that the protein levels of COXIV decreased after immobilization. Electrical stimulation was effective against muscle atrophy, the elevated expression of atrogin-1, p-PERK, Parkin, and the decreased expression of COXIV.Conclusions: Immobilization of unilateral lower limb could induce rectus femoris muscle atrophy, endoplasmic reticulum stress and Parkin mediated mitophagy. Endoplasmic reticulum stress-induced Parkin-dependent mitophagy may be one of the mechanisms by which electrical stimulation can play a significant role.

  2. 12

    الوصف: Objective: The present study was to investigate the effect of low-frequency electrical stimulation on disuse muscle atrophy and its mechanism in a rabbit model of extending knee joint contracture.Methods: This study designed two experiments. In the time-point experiment, 24 rabbits were randomly divided into Control 1(Ctrl1), immobilization for 2 weeks (I-2), I-4, and I-6 groups. In the intervention experiment, 24 rabbits were also randomly divided into Control 2 (Ctrl2), electrical stimulation (ES), natural recovery (NR) and electrical stimulation treatment (EST) groups. All intervention effects were assessed by evaluating the knee joint range of motion (ROM), cross-sectional area (CSA) of muscle and the expression of autophagy-related proteins.Results: Time-point experiment showed that immobilization reduced knee ROM, muscle CSA, and activated autophagy in skeletal muscle. Levels of four autophagic proteins including p-mTOR, Atg7, p62 and LC3B-II, were significantly elevated in the skeletal muscle of I-4 group. The intervention experiment further presented that LFES significantly improved the immobilization-induced ROM and CSA reduction. Additionally, LFES significantly reversed autophagy activation of skeletal muscle caused by immobilization.Conclusions: Low-frequency electrical stimulation alleviates immobilization-evoked disuse muscle atrophy maybe via inhibiting autophagy in skeletal muscle of rabbits.

  3. 13

    المصدر: The Knee. 27:795-802

    الوصف: Objective To investigate the effects of ultrashort wave treatment on joint dysfunction and muscle atrophy in a rabbit model of extending knee joint contracture. Methods Forty rabbits were randomly divided into eight groups. In group C, the left knee joint was not fixed. In group I-8, the left knee joint was only fixed for eight weeks. In groups R-1, R-2, and R-4, the left knee joint was fixed for eight weeks before the rabbits underwent one, two, and four weeks of self-recovery, respectively. In groups T-1, T-2, and T-4, the left knee joint was fixed for eight weeks before the rabbits underwent one, two, and four weeks of ultrashort wave treatment, respectively. The degree of total contracture and myogenic contracture were measured, the cross-sectional area (CSA) and protein levels for myogenic differentiation (MyoD) of the rectus femoris were evaluated. Results There was a tendency toward a reduced degree of total and myogenic contracture, and also a tendency toward an increased CSA of the rectus femoris and increased protein levels for MyoD after both self-recovery and ultrashort wave treatment. The ultrashort wave was more effective than self-recovery in reducing the total and myogenic contracture, and increasing the CSA and MyoD protein levels of the rectus femoris. Conclusions Ultrashort wave treatment may ameliorate joint dysfunction and muscle atrophy by upregulating the expression of MyoD protein in a rabbit model of extending knee joint contracture.

  4. 14

    المصدر: BMC musculoskeletal disorders. 23(1)

    الوصف: Background The study aimed to investigate the effect of low-frequency electrical stimulation (LFES) on disuse muscle atrophy and its mechanism in a rabbit model of knee extension contracture. Methods This study involved two experiments. In the time-point experiment, 24 rabbits were randomly divided into 4 groups: Control 1 (Ctrl1 group), immobilization for 2 weeks (I-2 group), immobilization for 4 weeks (I-4 group), and immobilization for 6 weeks (I-6 group). In the intervention experiment, 24 rabbits were randomly divided into 4 groups: Control 2 (Ctrl2 group), electrical stimulation (ESG group), natural recovery (NRG group), and electrical stimulation treatment (ESTG group). All intervention effects were assessed by evaluating the knee joint range of motion (ROM), cross-sectional area (CSA) of the rectus femoris muscle, and expression of autophagy-related proteins. Results The time-point experiment showed that immobilization reduced the knee ROM, reduced the rectus femoris muscle CSA, and activated autophagy in skeletal muscle. The levels of five autophagy-related proteins [mammalian target of rapamycin (mTOR), phosphorylated mTOR (p-mTOR), autophagy-related protein 7 (Atg7), p62, and microtubule-associated protein light chain 3B-II (LC3B-II)] were significantly elevated in the skeletal muscle of the I-4 group. The intervention experiment further showed that LFES significantly improved the immobilization-induced reductions in ROM and CSA. Additionally, LFES resulted in a significant decrease in the protein expression of mTOR, p-mTOR, Atg7, p62, and LC3B-II in the rectus femoris muscle. Conclusions LFES alleviates immobilization-evoked disuse muscle atrophy possibly by inhibiting autophagy in the skeletal muscle of rabbits.

  5. 15

    المصدر: Connective tissue research. 63(3)

    الوصف: Purpose: We investigate the underlying biological effects and mechanisms of rESWT on myogenic contracture and muscle atrophy in a rabbit model of extending knee joint contracture.Materials and Methods: In group control, the knee joint was not fixed. In group I-4w, the knee joint was only fixed for 4 weeks. In groups SR-1 w, SR-2 w, and SR-4 w, the knee joint was fixed for 4 weeks before the rabbits underwent 1, 2, and 4 weeks of self-recovery, respectively. In groups rESWT-1 w, rESWT 2 w, and rESWT-4 w, the knee joint was fixed for 4 weeks before the rabbits underwent 1, 2, and 4 weeks of rESWT, respectively. The myogenic contracture was measured, the cross-sectional area and key protein levels for NF-κB/HIF-1α signaling pathway and myogenic regulatory factors were evaluated.Results: During the recovery period, biological findings showed that the levels of myogenic contracture and muscle atrophy were milder in group rESWT by compared with group SR after 2 weeks. Molecular biological analysis showed that MyoD protein levels in the group rESWT was significantly higher than those in the group SR, and importantly, phospho-NF-κB p65 and HIF-1α protein levels in the group rESWT were significantly lower than those in the group SR at the same time point.Conclusions: This is the first study demonstrated that rESWT has the potential to reduce myogenic contracture and muscle atrophy after long-term immobilization in animal model. It is a possible mechanism that changing the low oxygen environment in skeletal muscle through rESWT may inhibit activation of NF-κB/HIF-1α signaling pathway.

  6. 16

    المصدر: Chinese Journal of Traumatology, Vol 22, Iss 2, Pp 93-98 (2019)
    Chinese Journal of Traumatology

    الوصف: The clinical treatment of joint contracture due to immobilization remains difficult. The pathological changes of muscle tissue caused by immobilization-induced joint contracture include disuse skeletal muscle atrophy and skeletal muscle tissue fibrosis. The proteolytic pathways involved in disuse muscle atrophy include the ubiquitin-proteasome-dependent pathway, caspase system pathway, matrix metalloproteinase pathway, Ca2+-dependent pathway and autophagy-lysosomal pathway. The important biological processes involved in skeletal muscle fibrosis include intermuscular connective tissue thickening caused by transforming growth factor-β1 and an anaerobic environment within the skeletal muscle leading to the induction of hypoxia-inducible factor-1α. This article reviews the progress made in understanding the pathological processes involved in immobilization-induced muscle contracture and the currently available treatments. Understanding the mechanisms involved in immobilization-induced contracture of muscle tissue should facilitate the development of more effective treatment measures for the different mechanisms in the future. Keywords: Immobilization-induced joint contracture, Disuse skeletal muscle atrophy, Skeletal muscle fibrosis, Treatment

  7. 17

    المصدر: American journal of physical medicinerehabilitation. 100(7)

    الوصف: OBJECTIVE The purpose of this study was to examine the intervention effect of radial extracorporeal shock wave combined with ultrashort wave diathermy on immobilization-induced fibrosis and contracture of muscle. DESIGN The groups included male rabbits for the group (control group). To cause joint contracture, rabbits underwent plaster fixation of a left knee joint at full extension. After immobilization for 4 wks, all rabbits were randomly divided into five groups: model group, natural recovery group, radial extracorporeal shock wave treatment group, ultrashort wave diathermy group, and radial extracorporeal shock wave combined with ultrashort wave diathermy group. All intervention effects were assessed by evaluating the cross-sectional area and the collagen deposition of muscle, the knee joint range of motion and the protein levels for transforming growth factor β1 and hypoxia-inducible factor 1α. RESULTS The combined treatment group got the best recovery of the knee joint function. The combined treatment was more effective than radial extracorporeal shock wave or ultrashort wave diathermy alone against the fibrosis and contracture of muscle, as well as the overexpression of transforming growth factor β1 and hypoxia-inducible factor 1α. CONCLUSIONS Radial extracorporeal shock wave combined with ultrashort wave diathermy was effective in alleviating immobilization-induced contracture and fibrosis of muscle, as well as reducing the molecular manifestations of muscle fibrosis.

  8. 18

    المصدر: American Journal of Physical Medicine & Rehabilitation. 97:357-363

    الوصف: Objective The aim of this study was to investigate the therapeutic effect of stretching combined with ultrashort wave on joint contracture and explore its possible mechanism. Design Thirty-two rabbits underwent unilateral immobilization of a knee joint at full extension to cause joint contracture. At 6 wks after immobilization, the rabbits were randomly divided into the following four groups: natural recovery group, stretching treatment group, ultrashort wave treatment group, and combined treatment group. For comparison, eight control group animals of corresponding age were also examined. The effect of stretching and ultrashort wave treatment on joint contracture was assessed by measuring the joint range of motion, evaluating the collagen deposition of joint capsule and assessing the mRNA and protein levels for transforming growth factor β1 in the joint capsule. Results The combined treatment group led to the best recovery of joint function. The combined treatment with stretching and ultrashort wave was more effective than stretching or ultrashort wave treatment alone against the synovial thickening of suprapatellar joint capsule, the collagen deposition of anterior joint capsule, and the elevated expression of transforming growth factor β1 in the joint capsule. Conclusions Stretching combined with ultrashort wave treatment was effective in improving joint range of motion, reducing the biomechanical, histological, and molecular manifestations of joint capsule fibrosis in a rabbit model of extending joint contracture.

  9. 19

    المصدر: Science Progress. 104:003685042110549

    الوصف: The purpose of this study was to determine the preventive effect of ultrashort wave diathermy on immobilization-induced myogenic contracture and to explore its underlying mechanisms. Forty-two rabbits were randomly assigned into control (Group C), immobilization (Group I, which was further divided into one week, Group I-1; two weeks, Group I-2; and four weeks, Group I-4, subgroups by the length of immobilization) and ultrashort wave prevention (Group U, which was further divided into one week, Group U-1; two weeks, Group U-2; and four weeks, Group U-4, by time of treatment) groups. Intervention effects were assessed by evaluating rectus femoris cross-sectional area (CSA), knee range of motion, and the protein levels for myogenic differentiation (MyoD) and muscle atrophy F-box (MAFbx-1) in the rectus femoris. Compared with those of Group C, in Groups I and U, total contracture, myogenic contracture, MyoD and MAFbx-1 levels were significantly elevated, and CSA was significantly smaller ( p < 0.05). Compared with those of Group I at each time point, MyoD levels were significantly elevated, MAFbx-1 levels were significantly lower, CSA was significantly larger, and myogenic contracture was significantly alleviated in Group U ( p < 0.05). In the early stages of contracture, ultrashort wave diathermy reduces muscle atrophy and delays the process of myogenic contracture during joint immobilization; the mechanism of this may be explained as increased expression of MyoD triggered by suppression of the MAFbx-1-mediated ubiquitin-proteasome pathway.

  10. 20

    الوصف: Background As a common clinical disease, the incidence of joint contracture which is characterized by the reduction of range of motion (ROM) in the active or passive state of the joint has increased in recent years. This study was to investigate the effects of ultrashort wave on joint dysfunction and muscle atrophy in a rabbit model of extending knee joint contracture and its mechanism. Methods 35 rabbits underwent unilateral immobilization of a knee joint at full extension to cause joint contracture, and 5 rabbits were used for the control group. After 8 weeks immobilization, 35 rabbits were randomly divided into the following seven groups: I-8, R-1, R-2, R-4, T-1, T-2, and T-4. In the Group R-1, R-2 and R-4, the rabbits were experienced one, two, and four weeks self-recovery. In the Group T-1, T-2, and T-4, the rabbits were experienced one, two, and four weeks ultrashort wave treatment. The effect of self-recovery and ultrashort wave treatment on joint dysfunction and muscle atrophy was assessed by measuring the degree of total and myogenic contracture, evaluating the cross-sectional area (CSA) of rectus femoris and assessing the protein levels for MyoD. Results A tendency toward reduced the degree of total and myogenic contracture was observed after self-recovery and ultrashort wave treatment. A tendency toward increased the CSA of rectus femoris and the protein levels for MyoD was observed after self-recovery and ultrashort wave treatment. The ultrashort wave treatment led a better efficacy than self-recovery against the total and the myogenic contracture, the CSA and the protein levels for MyoD of rectus femoris. Conclusions Ultrashort wave ameliorates joint dysfunction and muscle atrophy via upregulating the expression of MyoD protein in a rabbit model of extending knee joint contracture.