يعرض 1 - 10 نتائج من 79 نتيجة بحث عن '"Patnaik, Sai Gourang"', وقت الاستعلام: 1.07s تنقيح النتائج
  1. 1
    دورية أكاديمية

    المؤلفون: Patnaik, Sai Gourang1 (AUTHOR) sai.patnaik@imec.be, Vanheusden, Genis1 (AUTHOR), Saleh, Ali Amir1 (AUTHOR)

    المصدر: Interface. Jun2024, Vol. 33 Issue 2, p61-66. 6p.

    مستخلص: Electrochemically induced deposition or ECiD can be defined as the deposition of compound films on a surface, as the result of chemical reactions in the near surface region between a precursor present in the bulk solution and an electrochemically generated precursor, mediator, or catalyst near that surface. The ECiD process has evolved from an odd curiosity into a thriving new branch in electrodeposition science. The library of materials synthesized by ECiD has been greatly expanded, along with the number of precipitation triggering knobs or tricks. Together with the breadth of possibilities and applications, the science behind the process has also accelerated. This article introduces the principle of the ECiD process for the electrodeposition of oxides, hydroxides, and compounds such as metal phosphates and metal-organic frameworks. The article discusses the mechanisms of these electrochemically induced deposition reactions as well as the pro-bases used to trigger the deposition. [ABSTRACT FROM AUTHOR]

    : Copyright of Interface is the property of IOP Publishing and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)

  2. 2
    دورية أكاديمية

    المساهمون: Équipe Nano-ingénierie et intégration des oxydes métalliques et de leurs interfaces (LAAS-NEO), Laboratoire d'analyse et d'architecture des systèmes (LAAS), Université Toulouse Capitole (UT Capitole), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J), Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Université Toulouse Capitole (UT Capitole), Université de Toulouse (UT), Université de Montréal (UdeM), Service Techniques et Équipements Appliqués à la Microélectronique (LAAS-TEAM), Centre interuniversitaire de recherche et d'ingenierie des matériaux (CIRIMAT), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut de Chimie - CNRS Chimie (INC-CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Centre de microcaractérisation Raimond Castaing (Centre Castaing), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Institut de Chimie - CNRS Chimie (INC-CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Énergie Matériaux Télécommunications - INRS (EMT-INRS), Institut National de la Recherche Scientifique Québec (INRS)-Université du Québec à Montréal = University of Québec in Montréal (UQAM), European Project: 771793,H2020,ERC-2017-COG,ERC 3D-CAP(2018), European Project: 101069259,ERC 3D-AP

    المصدر: ISSN: 2405-8297 ; Energy Storage Materials ; https://laas.hal.science/hal-04224179Test ; Energy Storage Materials, 2023, 63, pp.102986. ⟨10.1016/j.ensm.2023.102986⟩ ; https://www.sciencedirect.com/science/article/pii/S2405829723003641?via%3DihubTest.

    الوصف: International audience ; The enhanced areal energy of three-dimensional (3D) micro-supercapacitors has made these miniaturized energy-storage components increasingly important at the dawn of the Internet of Things. Although ultrahigh-capacitances have been obtained with Ru-based pseudocapacitive materials, their substitution with abundant non-noble transition metals is a key requirement to reduce the price of electrochemical micro-storage systems and enable long-term sustainability. Here we report a cost-effective and industrially feasible approach to realize 3D microsupercapacitors based on highly porous scaffolds of Ni/MnO2. These low-price electrodes exhibit a huge areal capacitance exceeding 4 F cm-2 and excellent cycling stability. In addition, extended cell voltages up to 2.6 V with areal energy of 1159 mJ cm-2 (i.e. 0.3 mWh cm-2) and high power of 11.1 mW cm-2 were achieved using innovative Na-based ionogel electrolytes. We also show a novel micro-supercapacitor design based on entangled porous Ni/MnO2 pillars, combining both energy and power ability on a small footprint area.

    العلاقة: info:eu-repo/grantAgreement//771793/EU/3D micro-supercapacitors for embedded electronics/ERC 3D-CAP; info:eu-repo/grantAgreement//101069259/EU/High-energy micro-supercapacitors based on low-cost materials/ERC 3D-AP; hal-04224179; https://laas.hal.science/hal-04224179Test; https://laas.hal.science/hal-04224179/documentTest; https://laas.hal.science/hal-04224179/file/HAL%20MS.pdfTest

  3. 3
    دورية أكاديمية

    المساهمون: Agentschap Innoveren en Ondernemen, Strategic Initiative Materials in Flanders

    المصدر: ACS Energy Letters ; volume 9, issue 2, page 513-519 ; ISSN 2380-8195 2380-8195

  4. 4
    دورية أكاديمية

    الوصف: Prussian white (PW) cathodes exhibit extremely fast rate kinetics for sodium ion (Na+) insertion/de-insertion at relatively high potentials. However, one of the major bottlenecks is to pair them with appropriate anode materials having similar rate kinetics. Herein, the combination of graphite anodes and several glyme-based electrolytes as appropriate building blocks for PW cathodes to achieve high power density without compromising on energy density is reported. Low defect, Na-rich PW is synthesized, and its electrochemical behavior is studied with conventional carbonate-based electrolytes as well as with diglyme (2G), tetraglyme (4G) and a 1 : 1 mixture of 2G and 4G. The stability of the electrolytes is also monitored via in situ (operando) pressure cell measurements. Graphite | electrolyte | PW cells are then studied in both two and three electrode configurations. It was found that glymes are compatible with the graphite/PW electrode pair and the resulting cells exhibit very good cyclability and rate ...

  5. 5
    دورية أكاديمية

    المساهمون: Équipe Nano-ingénierie et intégration des oxydes métalliques et de leurs interfaces (LAAS-NEO), Laboratoire d'analyse et d'architecture des systèmes (LAAS), Université Toulouse Capitole (UT Capitole), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J), Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Université Toulouse Capitole (UT Capitole), Université de Toulouse (UT), Énergie Matériaux Télécommunications - INRS (EMT-INRS), Institut National de la Recherche Scientifique Québec (INRS)-Université du Québec à Montréal = University of Québec in Montréal (UQAM), Service Techniques et Équipements Appliqués à la Microélectronique (LAAS-TEAM), European Project: 771793,H2020,ERC-2017-COG,ERC 3D-CAP(2018)

    المصدر: ISSN: 2405-8297 ; Energy Storage Materials ; https://laas.hal.science/hal-03585171Test ; Energy Storage Materials, 2022, 47, pp.134-140. ⟨10.1016/j.ensm.2022.02.009⟩.

    الوصف: International audience ; Microsupercapacitor electrodes with 3D architectures have drawn increasing interest in recent years due to their better energetic performances while maintaining a reduced footprint occupancy. Here, we report two different strategies to realize highly porous scaffolds of RuO2 on Si wafers, with areal enlargement factors exceeding 13000 cm 2 /cm 2. The 3D structures are synthesized via hydrogen bubble dynamic template at low temperature, onto which a conformal electrodeposition of hydrated RuO2 thin film is performed. The microsupercapacitor electrode exhibits a record areal capacitance of 24 F cm-2 with an incredible areal energy of 8.7 J cm-2 (i.e. 2.4 mWh cm-2), together with a high power of 354 mW cm-2 and an excellent cycling stability. These electrodes stand miles ahead from previously reported studies both in terms of their surface area and surface capacitance, making them suitable for IoT applications demanding high energy/high power density per footprint area.

    العلاقة: info:eu-repo/grantAgreement//771793/EU/3D micro-supercapacitors for embedded electronics/ERC 3D-CAP; hal-03585171; https://laas.hal.science/hal-03585171Test; https://laas.hal.science/hal-03585171/documentTest; https://laas.hal.science/hal-03585171/file/HAL.pdfTest

  6. 6
    دورية أكاديمية

    المساهمون: Équipe Nano-ingénierie et intégration des oxydes métalliques et de leurs interfaces (LAAS-NEO), Laboratoire d'analyse et d'architecture des systèmes (LAAS), Université Toulouse Capitole (UT Capitole), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J), Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Université Toulouse Capitole (UT Capitole), Université de Toulouse (UT), Service Techniques et Équipements Appliqués à la Microélectronique (LAAS-TEAM), Institut National de la Recherche Scientifique Québec (INRS), ERC 3D-CAP, European Project: 771793,H2020,ERC-2017-COG,ERC 3D-CAP(2018)

    المصدر: ISSN: 2380-8195.

    الوصف: International audience ; Three-dimensional (3D) electrodes with improved areal energy have become increasingly important for microscale energy storage at the dawn of the Internet of Things. At its heart are a plethora of microelectronic devices that require embedded energy harvesters and energy storage components to ensure autonomy. In this study, we develop porous metallic microstructures and their conformal coating with a new RuOxNySz material through a facile optimized electrodeposition process. The microporous structure with a nanodendritic network shows high areal capacitance (14.3 F cm–2 for the electrode and 714 mF cm–2 for an all-solid-state microsupercacitor) and stable performance (>80% retention after 5000 cycles) toward H+ storage. Remarkable Li+ storage capability with high areal capacity (5 mAh cm–2) and rate characteristics (1.5 mAh cm–2 at 3C) is also observed. These results coupled with a facile synthetic strategy can thus offer inspiration for large-scale production of 3D porous electrodes for microbatteries and microsupercapacitors.

    العلاقة: info:eu-repo/grantAgreement//771793/EU/3D micro-supercapacitors for embedded electronics/ERC 3D-CAP; hal-03063689; https://hal.science/hal-03063689Test; https://hal.science/hal-03063689/documentTest; https://hal.science/hal-03063689/file/MS%20HAL.pdfTest

  7. 7
    دورية أكاديمية

    المساهمون: Équipe Nano-ingénierie et intégration des oxydes métalliques et de leurs interfaces (LAAS-NEO), Laboratoire d'analyse et d'architecture des systèmes (LAAS), Université Toulouse Capitole (UT Capitole), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J), Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Université Toulouse Capitole (UT Capitole), Université de Toulouse (UT), University of Texas at Dallas Richardson (UT Dallas), Centre de microcaractérisation Raimond Castaing (Centre Castaing), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Institut de Chimie - CNRS Chimie (INC-CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP)

    المصدر: ISSN: 1932-7447.

    مصطلحات موضوعية: [SPI.MAT]Engineering Sciences [physics]/Materials

    الوصف: International audience ; This paper reports the synergetic effects of UV and visible light irradiation on the photocatalytic activity of well-defined nanostructures composed of TiO2 films and Au nanoparticles. New insights into the electronic as well as the chemical processes that drive water decomposition were obtained by varying the position of the NPs on top and at different depths inside the semiconductor film. This work highlights a synergetic effect of UV and visible light on the photocatalytic activity of all the Au containing structures: hydrogen produced under UV+Vis shows an 100 % enhancement compared to the net production obtained only under UV or vis light. The systems where Au NPs are embedded in the TiO2 outperform the one where NPs are positioned on the surface, indicating that water-splitting reaction occurs primarily on the TiO2 surface rather than on the metal. Photocurrent and photocatalytic activity measurements under UV (353-403 nm), visible (400-1100 nm) and UV+Vis (300-1100 nm) light, revealed the synergetic contribution of UV and Vis. Indeed, the plasmonic Au NPs create an intense oscillating electric field at the Au NPs/semiconductor interface (visible light contribution); this mechanism coupled with the 2 Schottky barrier formation generates hot electrons resulting in better photo-excited charge separation. In addition, contrary to what is generally assumed, charges injection by the plasmon from the metal into the semiconductor play a marginal role in the Hydrogen Evolution Reaction (HER). Furthermore, the paper highlights the positive impact of the semiconductor crystallinity surrounding the metal particles to avoid the charge carrier recombination; and the importance of a surface free of oxygen vacancies, whose presence can inhibit the water decomposition.

  8. 8
    دورية أكاديمية

    المساهمون: Équipe Nano-ingénierie et intégration des oxydes métalliques et de leurs interfaces (LAAS-NEO), Laboratoire d'analyse et d'architecture des systèmes (LAAS), Université Toulouse Capitole (UT Capitole), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J), Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Université Toulouse Capitole (UT Capitole), Université de Toulouse (UT), Énergie Matériaux Télécommunications - INRS (EMT-INRS), Institut National de la Recherche Scientifique Québec (INRS)-Université du Québec à Montréal = University of Québec in Montréal (UQAM), Équipe Intégration de Systèmes de Gestion de l'Énergie (LAAS-ISGE), ERC 3D-CAP, European Project: 771793,H2020,ERC-2017-COG,ERC 3D-CAP(2018)

    المصدر: ISSN: 2574-0962 ; ACS Applied Energy Materials ; https://hal.science/hal-02600888Test ; ACS Applied Energy Materials, 2020, 3 (5), pp.4144-4148. ⟨10.1021/acsaem.0c00476⟩.

    الوصف: International audience ; With its huge pseudocapacitance and excellent stability, ruthenium dioxide (RuO2) is considered to be one of the best electrode materials for supercapacitors. However, such properties are only obtained with hydrous RuO2 in an amorphous phase, limiting the range of possible deposition techniques. Herein we report a detailed understanding of reactions of protons (H+) occurring in crystalline RuO2 with regard to its orientation using density functional theory. In particular, we show that migration pathways are energetically favorable along the [001] direction, leading to a deeper H+ penetration within the bulk of the active material and a much higher charge storage ability.

    العلاقة: info:eu-repo/grantAgreement//771793/EU/3D micro-supercapacitors for embedded electronics/ERC 3D-CAP; hal-02600888; https://hal.science/hal-02600888Test; https://hal.science/hal-02600888/documentTest; https://hal.science/hal-02600888/file/HAL.pdfTest

  9. 9
    دورية أكاديمية

    المصدر: Scientific Reports ; volume 10, issue 1 ; ISSN 2045-2322

    مصطلحات موضوعية: Multidisciplinary

    الوصف: Long-term stability is one of the most desired functionalities of energy storage microdevices for wearable electronics, wireless sensor networks and the upcoming Internet of Things. Although Li-ion microbatteries have become the dominant energy-storage technology for on-chip electronics, the extension of lifetime of these components remains a fundamental hurdle to overcome. Here, we develop an ultra-stable porous anode based on SnAu alloys able to withstand a high specific capacity exceeding 100 µAh cm −2 at 3 C rate for more than 6000 cycles of charge/discharge. Also, this new anode material exhibits low potential (0.2 V versus lithium) and one of the highest specific capacity ever reported at low C-rates (7.3 mAh cm −2 at 0.1 C). We show that the outstanding cyclability is the result of a combination of many factors, including limited volume expansion, as supported by density functional theory calculations. This finding opens new opportunities in design of long-lasting integrated energy storage for self-powered microsystems.

  10. 10
    رسالة جامعية