يعرض 1 - 10 نتائج من 381 نتيجة بحث عن '"P. Zema"', وقت الاستعلام: 0.93s تنقيح النتائج
  1. 1
    تقرير

    مصطلحات موضوعية: Physics - Chemical Physics

    الوصف: The three-body dissociation dynamics of the dicationic camphor molecule (C$_{10}$H$_{16}$O$^{2+}$) resulting from Auger decay are investigated using soft X-ray synchrotron radiation. A photoelectron-photoion-photoion coincidence (PEPIPICO) method, a combination of a velocity map imaging (VMI) spectrometer and a time-of-flight (ToF) spectrometer is employed to measure the 3D momenta of ions detected in coincidence. The ion mass spectra and the ion-ion coincidence map at photon energies of 287.9 eV (below the C 1s ionization potential) and 292.4 eV (above the C 1s ionization potential for skeletal carbon) reveal that fragmentation depends on the final dicationic state rather than the initial excitation. Using the native frame method, three new fragmentation channels are discussed; (1) CH$_2$CO$^+$ + C$_7$H$_{11}^+$ + CH$_3$, (2) CH$_3^+$ + C$_7$H$_{11}^+$ + CH$_2$CO, and (3) C$_2$H$_5^+$ + C$_6$H$_9^+$ + CH$_2$CO. The dominating nature of sequential decay with deferred charge separation is clearly evidenced in all three channels. The results are discussed based on the experimental angular distributions and momenta distributions, corroborated by geometry optimization of the ground, monocationic, and dicationic camphor molecule.

    الوصول الحر: http://arxiv.org/abs/2406.08502Test

  2. 2
    تقرير

    الوصف: The main goal of the CRESST-III experiment is the direct detection of dark matter particles via their scattering off target nuclei in cryogenic detectors. In this work we present the results of a Silicon-On-Sapphire (SOS) detector with a mass of 0.6$\,$g and an energy threshold of (6.7$\, \pm \,$0.2)$\,$eV with a baseline energy resolution of (1.0$\, \pm \,$0.2)$\,$eV. This allowed for a calibration via the detection of single luminescence photons in the eV-range, which could be observed in CRESST for the first time. We present new exclusion limits on the spin-independent and spin-dependent dark matter-nucleon cross section that extend to dark matter particle masses of less than 100$\,$MeV/c$^{2}$.
    Comment: 10 pages, 8 figures

    الوصول الحر: http://arxiv.org/abs/2405.06527Test

  3. 3
    تقرير

    مصطلحات موضوعية: Physics - Instrumentation and Detectors

    الوصف: COSINUS is a dark matter (DM) direct search experiment that uses sodium iodide (NaI) crystals as cryogenic calorimeters. Thanks to the low nuclear recoil energy threshold and event-by-event discrimination capability, COSINUS will address the long-standing DM claim made by the DAMA/LIBRA collaboration. The experiment is currently under construction at the Laboratori Nazionali del Gran Sasso, Italy, and employs a large cylindrical water tank as a passive shield to meet the required background rate. However, muon-induced neutrons can mimic a DM signal therefore requiring an active veto system, which is achieved by instrumenting the water tank with an array of photomultiplier tubes (PMTs). This study optimizes the number, arrangement, and trigger conditions of the PMTs as well as the size of an optically invisible region. The objective was to maximize the muon veto efficiency while minimizing the accidental trigger rate due to the ambient and instrumental background. The final configuration predicts a veto efficiency of 99.63 $\pm$ 0.16 $\%$ and 44.4 $\pm$ $5.6\%$ in the tagging of muon events and showers of secondary particles, respectively. The active veto will reduce the cosmogenic neutron background rate to 0.11 $\pm$ 0.02 cts$\cdot$kg$^{-1}$$\cdot$year$^{-1}$, corresponding to less than one background event in the region of interest for the whole COSINUS-1$\pi$ exposure of 1000 kg$\cdot$days.

    الوصول الحر: http://arxiv.org/abs/2406.12870Test

  4. 4
    تقرير

    مصطلحات موضوعية: Physics - Instrumentation and Detectors

    الوصف: In recent times, the sensitivity of low-mass direct dark matter searches has been limited by unknown low energy backgrounds close to the energy threshold of the experiments known as the low energy excess (LEE). The CRESST experiment utilises advanced cryogenic detectors constructed with different types of crystals equipped with Transition Edge Sensors (TESs) to measure signals of nuclear recoils induced by the scattering of dark matter particles in the detector. In CRESST, this low energy background manifests itself as a steeply rising population of events below 200 eV. A novel detector design named doubleTES using two identical TESs on the target crystal was studied to investigate the hypothesis that the events are sensor-related. We present the first results from two such modules, demonstrating their ability to differentiate between events originating from the crystal's bulk and those occurring in the sensor or in its close proximity.
    Comment: 10 pages, 13 figures

    الوصول الحر: http://arxiv.org/abs/2404.02607Test

  5. 5
    تقرير

    الوصف: Cryogenic scintillating calorimeters are ultrasensitive particle detectors for rare event searches, particularly for the search for dark matter and the measurement of neutrino properties. These detectors are made from scintillating target crystals generating two signals for each particle interaction. The phonon (heat) signal precisely measures the deposited energy independent of the type of interacting particle. The scintillation light signal yields particle discrimination on an event-by-event basis. This paper presents a likelihood framework modeling backgrounds and a potential dark matter signal in the two-dimensional plane spanned by phonon and scintillation light energies. We apply the framework to data from CaWO$_4$-based detectors operated in the CRESST dark matter search. For the first time, a single likelihood framework is used in CRESST to model the data and extract results on dark matter in one step by using a profile likelihood ratio test. Our framework simultaneously fits (neutron) calibration data and physics (background) data and allows combining data from multiple detectors. Although tailored to CaWO$_4$-targets and the CRESST experiment, the framework can easily be expanded to other materials and experiments using scintillating cryogenic calorimeters for dark matter search and neutrino physics.
    Comment: 18 pages, 11 figures, additional figures and data in ancillary files

    الوصول الحر: http://arxiv.org/abs/2403.03824Test

  6. 6
    تقرير

    الوصف: The CSC (cryogenic scintillating calorimeter) technology devoted to rare event searches is reaching the sensitivity level required for the hunt of dark matter-electron scatterings. Dark matter-electron interactions in scintillating targets are expected to stimulate the emission of single photons, each of energy equal to the target electronic band gap. The electronic band gap in scintillators like NaI/GaAs is of O(eV). The search for this signal can be done by an array of cryogenic light detectors with eV/sub-eV energy resolution. In this work, we describe the detection principle, the detector response and the envisioned detector design to search for dark matter interacting with electrons via the measurement of the scintillation light at millikelvin. First sensitivity projections are provided, which show the potential of this research.

    الوصول الحر: http://arxiv.org/abs/2402.01395Test

  7. 7
    تقرير

    الوصف: Recently low-mass dark matter direct searches have been hindered by a low energy background, drastically reducing the physics reach of the experiments. In the CRESST-III experiment, this signal is characterised by a significant increase of events below 200 eV. As the origin of this background is still unknown, it became necessary to develop new detector designs to reach a better understanding of the observations. Within the CRESST collaboration, three new different detector layouts have been developed and they are presented in this contribution.
    Comment: 8 pages, 4 figures

    الوصول الحر: http://arxiv.org/abs/2311.07318Test

  8. 8
    تقرير

    الوصف: Diamond operated as a cryogenic calorimeter is an excellent target for direct detection of low-mass dark matter candidates. Following the realization of the first low-threshold cryogenic detector that uses diamond as absorber for astroparticle physics applications, we now present the resulting exclusion limits on the elastic spin-independent interaction cross-section of dark matter with diamond. We measured two 0.175 g CVD (Chemical Vapor Deposition) diamond samples, each instrumented with a W-TES. Thanks to the energy threshold of just 16.8 eV of one of the two detectors, we set exclusion limits on the elastic spin-independent interaction of dark matter particles with carbon nuclei down to dark matter masses as low as 0.122 GeV/c2. This work shows the scientific potential of cryogenic detectors made from diamond and lays the foundation for the use of this material as target for direct detection dark matter experiments.
    Comment: 6 pages, 6 figures

    الوصول الحر: http://arxiv.org/abs/2310.05815Test

  9. 9
    تقرير

    الوصف: Hydrogenated amorphous silicon (a-Si:H) is a material having an intrinsically high radiation hardness that can be deposited on flexible substrates like Polyimide. For these properties a-Si:H can be used for the production of flexible sensors. a-Si:H sensors can be successfully utilized in dosimetry, beam monitoring for particle physics (x-ray, electron, gamma-ray and proton detection) and radiotherapy, radiation flux measurement for space applications (study of solar energetic particles and stellar events) and neutron flux measurements. In this paper we have studied the dosimetric x-ray response of n-i-p diodes deposited on Polyimide. We measured the linearity of the photocurrent response to x-rays versus dose-rate from which we have extracted the dosimetric x-ray sensitivity at various bias voltages. In particular low bias voltage operation has been studied to assess the high energy efficiency of these kind of sensor. A measurement of stability of x-ray response versus time has been shown. The effect of detectors annealing has been studied. Operation under bending at various bending radii is also shown.

    الوصول الحر: http://arxiv.org/abs/2310.00495Test

  10. 10
    تقرير

    الوصف: Sodium iodide (NaI) based cryogenic scintillating calorimeters using quantum sensors for signal read out have shown promising first results towards a model-independent test of the annually modulating signal detected by the DAMA/LIBRA dark matter experiment. The COSINUS collaboration has previously reported on the first above-ground measurements using a dual channel readout of phonons and light based on transition edge sensors (TESs) that allows for particle discrimination on an event-by-event basis. In this letter, we outline the first underground measurement of a NaI cryogenic calorimeter read out via the novel remoTES scheme. A 3.67 g NaI absorber with an improved silicon light detector design was operated at the Laboratori Nazionali del Gran Sasso, Italy. A significant improvement in the discrimination power of $e^-$/$\gamma$-events to nuclear recoils was observed with a five-fold improvement in the nuclear recoil baseline resolution, achieving $\sigma$ = 441 eV. Furthermore, we present a limit on the spin-independent dark-matter nucleon elastic scattering cross-section achieving a sensitivity of $\mathcal{O}$(pb) with an exposure of only 11.6 g d.
    Comment: 11 pages, 14 figures

    الوصول الحر: http://arxiv.org/abs/2307.11139Test