يعرض 1 - 3 نتائج من 3 نتيجة بحث عن '"N response efficiency"', وقت الاستعلام: 0.91s تنقيح النتائج
  1. 1

    المصدر: Pedosphere, vol.31(2), pp.323-331
    Kérwá
    Universidad de Costa Rica
    instacron:UCR

    الوصف: Nitrification inhibitors are widely used in agriculture to mitigate nitrous oxide (N2O) emission and increase crop yield. However, no concrete information on their mitigation of N2O emission is available under soil and environmental conditions as in Pakistan. A field experiment was established using a silt clay loam soil from Peshawar, Pakistan, to study the effect of urea applied in combination with a nitrification inhibitor, nitrapyrin (2-chloro-6-tri-chloromethyl pyridine), and/or a plant growth regulator, gibberellic acid (GA3), on N2O emission and the nitrogen (N) uptake efficiency of maize. The experimental design was a randomized complete block with five treatments in four replicates: control with no N (CK), urea (200 kg N ha–1) alone, urea in combination with nitrapyrin (700 g ha–1), urea in combination with GA3 (60 g ha–1), and urea in combination with nitrapyrin and GA3. The N2O emission, yield, N response efficiency, and total N uptake were measured during the experimental period. The treatment with urea and nitrapyrin reduced total N2O emission by 39%–43% and decreased yield-scaled N2O emission by 47%–52%, relative to the treatment with urea alone. The maize plant biomass, grain yield, and total N uptake increased significantly by 23%, 17%, and 15%, respectively, in the treatment with urea and nitrapyrin, relative to the treatment with urea alone, which was possibly due to N saving, lower N loss, and increased N uptake in the form of ammonium; they were further enhanced in the treatment with urea, nitrapyrin, and GA3 by 27%, 36%, and 25%, respectively, probably because of the stimulating effect of GA3 on plant growth and development and the reduction in biotic and abiotic stresses. These results suggest that applying urea in combination with nitrapyrin and GA3 has the potential to mitigate N2O emission, improve N response efficiency, and increase maize yield. UCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias Básicas::Centro en Investigación en Contaminación Ambiental (CICA)

  2. 2
    دورية أكاديمية

    المصدر: Pedosphere, vol.31(2), pp.323-331

    الوصف: Nitrification inhibitors are widely used in agriculture to mitigate nitrous oxide (N2O) emission and increase crop yield. However, no concrete information on their mitigation of N2O emission is available under soil and environmental conditions as in Pakistan. A field experiment was established using a silt clay loam soil from Peshawar, Pakistan, to study the effect of urea applied in combination with a nitrification inhibitor, nitrapyrin (2-chloro-6-tri-chloromethyl pyridine), and/or a plant growth regulator, gibberellic acid (GA3), on N2O emission and the nitrogen (N) uptake efficiency of maize. The experimental design was a randomized complete block with five treatments in four replicates: control with no N (CK), urea (200 kg N ha–1) alone, urea in combination with nitrapyrin (700 g ha–1), urea in combination with GA3 (60 g ha–1), and urea in combination with nitrapyrin and GA3. The N2O emission, yield, N response efficiency, and total N uptake were measured during the experimental period. The treatment with urea and nitrapyrin reduced total N2O emission by 39%–43% and decreased yield-scaled N2O emission by 47%–52%, relative to the treatment with urea alone. The maize plant biomass, grain yield, and total N uptake increased significantly by 23%, 17%, and 15%, respectively, in the treatment with urea and nitrapyrin, relative to the treatment with urea alone, which was possibly due to N saving, lower N loss, and increased N uptake in the form of ammonium; they were further enhanced in the treatment with urea, nitrapyrin, and GA3 by 27%, 36%, and 25%, respectively, probably because of the stimulating effect of GA3 on plant growth and development and the reduction in biotic and abiotic stresses. These results suggest that applying urea in combination with nitrapyrin and GA3 has the potential to mitigate N2O emission, improve N response efficiency, and increase maize yield. ; UCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias Básicas::Centro en Investigación en Contaminación Ambiental (CICA)

    وصف الملف: application/pdf

  3. 3
    دورية أكاديمية

    الوصف: Nitrogen (N) enrichment often increases aboveground net primary productivity (ANPP) of the ecosystem, but it is unclear if belowground net primary productivity (BNPP) track responses of ANPP. Moreover, the frequency of N inputs may affect primary productivity but is rarely studied. To assess the response patterns of above- and belowground productivity to rates of N addition under different addition frequencies, we manipulated the rate (0-50 g N m(-2) year(-1)) and frequency (twice vs. monthly additions per year) of NH4NO3 inputs for six consecutive years in a temperate grassland in northern China and measured ANPP and BNPP from 2012 to 2014. In the low range of N addition rates, BNPP showed the greatest negative response and ANPP showed the greatest positive responses with increases in N addition (<10 g N m(-2) year(-1)). As N addition increased beyond 10 g N m(-2) year(-1), increases in ANPP dampened and decreases in BNPP ceased altogether. The response pattern of net primary productivity (combined above- and belowground; NPP) corresponded more closely to ANPP than to BNPP. The N effects on BNPP and BNPP/NPP (f(BNPP)) were not dependent on N addition frequency in the range of N additions typically associated with N deposition. BNPP was more sensitive to N addition frequency than ANPP, especially at low rates of N addition. Our findings provide new insights into how plants regulate carbon allocation to different organs with increasing N rates and changing addition frequencies. These root response patterns, if incorporated into Earth system models, may improve the predictive power of C dynamics in dryland ecosystems in the face of global atmospheric N deposition.

    العلاقة: GLOBAL CHANGE BIOLOGY; http://ir.ibcas.ac.cn/handle/2S10CLM1/19505Test