يعرض 1 - 10 نتائج من 419 نتيجة بحث عن '"Minsheng You"', وقت الاستعلام: 0.73s تنقيح النتائج
  1. 1
    دورية أكاديمية

    المصدر: iScience, Vol 27, Iss 3, Pp 109242- (2024)

    مصطلحات موضوعية: Global change, Entomology, Evolutionary biology, Science

    الوصف: Summary: Understanding a population’s fitness heterogeneity and genetic basis of thermal adaptation is essential for predicting the responses to global warming. We examined the thermotolerance and genetic adaptation of Plutella xylostella to exposure to hot temperatures. The population fitness parameters of the hot-acclimated DBM strains varied in the thermal environments. Using genome scanning and transcription profiling, we find a number of genes potentially involved in thermal adaptation of DBM. Editing two ABCG transporter genes, PxWhite and PxABCG, confirmed their role in altering cuticle permeability and influencing thermal responses. Our results demonstrate that SNP mutations in genes and changes in gene expression can allow DBM to rapidly adapt to thermal environment. ABCG transporter genes play an important role in thermal adaptation of DBM. This work improves our understanding of genetic adaptation mechanisms of insects to thermal stress and our capacity to predict the effects of rising global temperatures on ectotherms.

    وصف الملف: electronic resource

  2. 2
    دورية أكاديمية

    المصدر: mSystems, Vol 8, Iss 6 (2023)

    الوصف: ABSTRACTThe diamondback moth (DBM), Plutella xylostella, has successfully adapted to the potent chemical defenses of Brassicaceae plants that deter most other herbivores. Gut bacteria are increasingly recognized as key to the biology of many species but their role in DBM adaptation to plant defense compounds is not well known. In this study, the secondary metabolites of radish seedlings, rich in flavonoids, were identified by liquid chromatography-mass spectrometry. These secondary metabolites reduced the larval growth of DBM lacking gut bacteria. The effect was rapidly eclipsed by the re-introduction of gut microbiota, which was dominated by Enterobacter (Proteobacteria). Similarly, while treatment with the flavonoid kaempferol adversely affected growth and extended the development time, these were alleviated by the re-introduction of Enterobacter sp. EbPXG5 (EbPXG5) to the DBM gut. EbPXG5 not only degrades kaempferol both in vitro and DBM gut, but is also shown to colonize the gut epithelium, forming a protective biofilm. Genomic sequencing of EbPXG5 showed that metabolic genes were the most abundant, especially those involved in xenobiotic degradation, and the metabolism of terpenoids and polyketides, which could participate in the degradation of plant secondary metabolites such as kaempferol. Overall, our results showed that EbPXG5 is a bacterium common in the gut of DBM larvae and has the in vitro and in vivo capacity to detoxify a major secondary metabolite that is produced in brassica plants as a defense against herbivores. This insect-bacterial association may be an important contributor to the status of DBM as a major pest of brassica crops worldwide.IMPORTANCEIn this study, we identify an important role of gut bacteria in mediating the adaptation of diamondback moth (DBM) to plant secondary metabolites. We demonstrate that kaempferol’s presence in radish seedlings greatly reduces the fitness of DBM with depleted gut biota. Reinstatement of gut biota, particularly Enterobacter sp. EbPXG5, improved insect performance by degrading kaempferol. This bacterium was common in the larval gut of DBM, lining the epithelium as a protective film. Our work highlights the role of symbiotic bacteria in insect herbivore adaptation to plant defenses and provides a practical and mechanistic framework for developing a more comprehensive understanding of insect-gut microbe-host plant co-evolution.

    وصف الملف: electronic resource

  3. 3
    دورية أكاديمية

    المصدر: Insects, Vol 15, Iss 2, p 132 (2024)

    الوصف: Wolbachia bacteria (phylum Proteobacteria) are ubiquitous intracellular parasites of diverse invertebrates. In insects, coevolution has forged mutualistic associations with Wolbachia species, influencing reproduction, immunity, development, pathogen resistance, and overall fitness. However, the impact of Wolbachia on other microbial associates within the insect microbiome, which are crucial for host fitness, remains less explored. The diamondback moth (Plutella xylostella), a major pest of cruciferous vegetables worldwide, harbors the dominant Wolbachia strain plutWB1, known to distort its sex ratio. This study investigated the bacterial community diversity and dynamics across different developmental life stages and Wolbachia infection states in P. xylostella using high-throughput 16S rDNA amplicon sequencing. Proteobacteria and Firmicutes dominated the P. xylostella microbiome regardless of life stage or Wolbachia infection. However, the relative abundance of dominant genera, including an unclassified genus of Enterobacteriaceae, Wolbachia, Carnobacterium, and Delftia tsuruhatensis, displayed significant stage-specific variations. While significant differences in bacterial diversity and composition were observed across life stages, Wolbachia infection had no substantial impact on overall diversity. Nonetheless, relative abundances of specific genera differed between infection states. Notably, Wolbachia exhibited a stable, high relative abundance across all stages and negatively correlated with an unclassified genus of Enterobacteriaceae, Delftia tsuruhatensis, and Carnobacterium. Our findings provide a foundational understanding of the complex interplay between the host, Wolbachia, and the associated microbiome in P. xylostella, paving the way for a deeper understanding of their complex interactions and potential implications for pest control strategies.

    وصف الملف: electronic resource

  4. 4
    دورية أكاديمية

    المصدر: Genomics, Proteomics & Bioinformatics, Vol 20, Iss 6, Pp 1092-1105 (2022)

    الوصف: Tea green leafhopper (TGL), Empoasca onukii, is of biological and economic interest. Despite numerous studies, the mechanisms underlying its adaptation and evolution remain enigmatic. Here, we use previously untapped genome and population genetics approaches to examine how the pest adapted to different environmental variables and thus has expanded geographically. We complete a chromosome-level assembly and annotation of the E. onukii genome, showing notable expansions of gene families associated with adaptation to chemoreception and detoxification. Genomic signals indicating balancing selection highlight metabolic pathways involved in adaptation to a wide range of tea varieties grown across ecologically diverse regions. Patterns of genetic variations among 54 E. onukii samples unveil the population structure and evolutionary history across different tea-growing regions in China. Our results demonstrate that the genomic changes in key pathways, including those linked to metabolism, circadian rhythms, and immune system functions, may underlie the successful spread and adaptation of E. onukii. This work highlights the genetic and molecular basis underlying the evolutionary success of a species with broad economic impacts, and provides insights into insect adaptation to host plants, which will ultimately facilitate more sustainable pest management.

    وصف الملف: electronic resource

  5. 5
    دورية أكاديمية

    المصدر: Evolutionary Bioinformatics, Vol 19 (2023)

    مصطلحات موضوعية: Evolution, QH359-425

    الوصف: Based on the important role of antibiotic treatment in the research of the interaction between Wolbachia and insect hosts, this study aimed to identify the most suitable antibiotic and concentration for Wolbachia elimination in the P. xylostella , and to investigate the effect of Wolbachia and antibiotic treatment on the bacterial community of P. xylostella . Our results showed that the Wolbachia -infected strain was plutWB1 of supergroup B in the P. xylostella population collected in Nepal in this study; 1 mg/mL rifampicin could remove Wolbachia infection in P. xylostella after 1 generation of feeding treatment and the toxic effect was relatively low; among the 29 samples of adult P. xylostella in our study (10 WU samples, 10 WA samples, and 9 WI samples), 52.5% of the sequences were of Firmicutes and 47.5% were of Proteobacteria, with the dominant genera being mainly Carnobacterium (46.2%), Enterobacter (10.1%), and Enterococcus (6.2%); Moreover, antibiotic removal of Wolbachia infection in P. xylostella and transfer to normal conditions for 10 generations no longer significantly affected the bacterial community of P. xylostella . This study provides a theoretical basis for the elimination method of Wolbachia in the P. xylostella , as well as a reference for the elimination method of Wolbachia in other Wolbachia -infected insect species, and a basis for the study of the extent and duration of the effect of antibiotic treatment on the bacterial community of the P. xylostella .

    وصف الملف: electronic resource

  6. 6
    دورية أكاديمية

    المصدر: Frontiers in Microbiology, Vol 14 (2023)

    الوصف: The gut microbiomes of arthropods have significant impact on key physiological functions such as nutrition, reproduction, behavior, and health. Spiders are diverse and numerically dominant predators in crop fields where they are potentially important regulators of pests. Harnessing spiders to control agricultural pests is likely to be supported by an understanding of their gut microbiomes, and the environmental drivers shaping microbiome assemblages. This study aimed to deciphering the gut microbiome assembly of these invertebrate predators and elucidating potential implications of key environmental constraints in this process. Here, we used high-throughput sequencing to examine for the first time how the assemblages of bacteria in the gut of spiders are shaped by environmental variables. Local drivers of microbiome composition were globally-relevant input use system (organic production vs. conventional practice), and crop identity (Chinese cabbage vs. cauliflower). Landscape-scale factors, proportion of forest and grassland, compositional diversity, and habitat edge density, also strongly affected gut microbiota. Specific bacterial taxa were enriched in gut of spiders sampled from different settings and seasons. These findings provide a comprehensive insight into composition and plasticity of spider gut microbiota. Understanding the temporal responses of specific microbiota could lead to innovative strategies development for boosting biological control services of predators.

    وصف الملف: electronic resource

  7. 7
    دورية أكاديمية

    المصدر: Ecotoxicology and Environmental Safety, Vol 254, Iss , Pp 114761- (2023)

    الوصف: Insect hormones, such as juvenile hormone (JH), precisely regulate insect life-history traits. The regulation of JH is tightly associated with the tolerance or resistance to Bacillus thuringiensis (Bt). JH esterase (JHE) is a primary JH-specific metabolic enzyme which plays a key role in regulating JH titer. Here, we characterized a JHE gene from Plutella xylostella (PxJHE), and found it was differentially expressed in the Bt Cry1Ac resistant and susceptible strains. Suppression of PxJHE expression with RNAi increased the tolerance of P. xylostella to Cry1Ac protoxin. To investigate the regulatory mechanism of PxJHE, two target site prediction algorithms were applied to predict the putative miRNAs targeting PxJHE, and the resulting putative miRNAs were subsequently verified for their function targeting PxJHE using luciferase reporter assay and RNA immunoprecipitation. MiR-108 or miR-234 agomir delivery dramatically reduced PxJHE expression in vivo, whilst only miR-108 overexpression consequently increased the tolerance of P. xylostella larvae to Cry1Ac protoxin. By contrast, reduction of miR-108 or miR-234 dramatically increased PxJHE expression, accompanied by the decreased tolerance to Cry1Ac protoxin. Furthermore, injection of miR-108 or miR-234 led to developmental defects in P. xylostella, whilst injection of antagomir did not cause any obvious abnormal phenotypes. Our results indicated that miR-108 or miR-234 can be applied as potential molecular targets to combat P. xylostella and perhaps other lepidopteran pests, providing novel insights into miRNA-based integrated pest management.

    وصف الملف: electronic resource

  8. 8
    دورية أكاديمية

    المصدر: Frontiers in Physiology, Vol 13 (2023)

    الوصف: Chemosensory proteins (CSPs) can bind and transport odorant molecules, which are believed to be involved in insect chemoreception. Here, we investigated three CSPs in perception of volatiles in Empoasca onukii. Expression profiles showed that although EonuCSP4, EonuCSP 6-1 and EonuCSP6-2 were ubiquitously expressed in heads, legs, thoraxes and abdomen, they were all highly expressed in the antennae of E. onukii. Further, fluorescence competitive binding assays revealed that EonuCSP4 and 6-1 had binding affinities for three plant volatiles, suggesting their possible involvement in the chemosensory process. Among them, EonuCSP6-1 showed relatively high binding affinities for benzaldehyde. Behavioral assays revealed that the adults of E. onukii showed a significant preference for two compounds including benzaldehyde. The predicted three-dimensional (3D) structures of these 3 CSP have the typical six α-helices, which form the hydrophobic ligand-binding pocket. We therefore suggest that Eoun6-1 might be involved in the chemoreception of the host-related volatiles for E. onukii. Our data may provide a chance of finding a suitable antagonist of alternative control strategies which block the perception of chemosensory signals in pest, preventing the food- orientation behaviors.

    وصف الملف: electronic resource

  9. 9
    دورية أكاديمية

    المصدر: Nature Communications, Vol 12, Iss 1, Pp 1-11 (2021)

    مصطلحات موضوعية: Science

    الوصف: The diamondback moth is a cosmopolitan pest of significant economic importance. Here the authors analyse globally distributed genomic data to find evidence of climate-associated adaptive variation, and use an ecogenetic index to predict that it will maintain a global pest status under climate change.

    وصف الملف: electronic resource

  10. 10
    دورية أكاديمية

    المصدر: Scientific Data, Vol 8, Iss 1, Pp 1-7 (2021)

    مصطلحات موضوعية: Science

    الوصف: Measurement(s) species associations Technology Type(s) digital curation Factor Type(s) associations between Carabidae and Fungi Sample Characteristic - Organism Carabidae • Fungi • Laboulbeniales Sample Characteristic - Location global Machine-accessible metadata file describing the reported data: https://doi.org/10.6084/m9.figshare.14602770Test

    وصف الملف: electronic resource