يعرض 11 - 20 نتائج من 602 نتيجة بحث عن '"LAG-3"', وقت الاستعلام: 1.52s تنقيح النتائج
  1. 11
    دورية أكاديمية

    المصدر: Cancer Medicine, Vol 12, Iss 15, Pp 16359-16369 (2023)

    الوصف: Abstract Background Although some patients with diffuse large B‐cell lymphoma (DLBCL) show a response to immunotherapy, there are still many who do not respond. This suggests that various immune checkpoints are complicatedly intertwined in the composition of the tumor microenvironment of DLBCL. Patients and Methods To comprehensively understand the expression of various immune checkpoint genes in DLBCL, we performed NanoString assay in 98 patients to investigate 579 genes. In addition, we performed immunohistochemistry for LAG‐3 and PD‐L1 to compare the results with expression in NanoString assay. Results As a result of hierarchical clustering of NanoString assay, 98 DLBCLs were classified into three tumor immune microenvironment clusters. Most immune checkpoint genes showed the highest expression in cluster A and the lowest in cluster C. However, the expression of LAG3 was the highest in cluster C and the lowest in cluster A, showing an expression pattern opposite to that of other immune checkpoint genes. In Cluster A, the expression of genes related to T‐cell activity such as CD8A and GZMB was increased. In Cluster C, the expression of genes related to major histocompatibility complex molecules was the highest. Immunohistochemical stains showed modest agreement with the NanoString results but did not help clustering. Conclusion Our results show that the unique expression pattern of LAG3 in DLBCL contrasts with that of other immune checkpoints. We suggest that the combination of anti‐PD‐1/PD‐L1 and anti‐LAG‐3 blockades in the immunotherapy of DLBCL patients can have a synergistic effect, improving the immunotherapy efficacy and outcome in DLBCL patients.

    وصف الملف: electronic resource

  2. 12
    دورية أكاديمية

    المصدر: Journal of Clinical Medicine, Vol 13, Iss 12, p 3620 (2024)

    مصطلحات موضوعية: sarcoma, OX40, TİM-3, LAG-3, PD-L1, Medicine

    الوصف: Introduction: The current study aims to evaluate the OX40, TIM-3, LAG-3, and PD-L1 targeted pathways in the regulation of T-cell activity in sarcoma patients to determine their relationship with overall survival (OS). Method: This study included one hundred and eleven patients with bone and soft tissue sarcoma diagnosed in two centers between 2010 and 2020. OX40, LAG-3, TIM-3 and PD-L1 expression levels were evaluated immunohistochemically from pathology preparations. Results: PD-L1 staining was detected in tumor cells, OX40, LAG-3, TIM-3 staining was detected in inflammatory cells in tumor tissue. In univariate analysis, no significant relationship was found between OX40, TIM-3, LAG-3, and PD-L1 staining and overall survival (respectively: p = 0.12, p = 0.49, p = 0.31, p = 0.95). When grade and stage at diagnosis, which were found to be significant in univariate analysis, along with OX-40, TIM-3, LAG-3, and PD-L1, were evaluated in multivariate analysis, a positive effect of OX-40 staining on overall survival was determined (p = 0.009). Considering the correlation between PDL-1 and OX40, TIM-3, and LAG-3 staining, a significant positive correlation was found between PDL-1 and TIM-3 and LAG-3 staining (respectively; p = 0.002, p = 0.001). Conclusions: There was no significant relationship between the PDL-1 staining percentage of tumor cells and OX40, TIM-3, and LAG-3 staining in inflammatory cells with the OS of sarcoma patients. However, detecting a significant positive correlation between PDL-1 staining and TIM-3 and LAG-3 staining also holds promise for finding effective targetable combination therapies that can prolong survival in sarcoma patients in the future.

    وصف الملف: electronic resource

  3. 13
    دورية أكاديمية

    المصدر: Frontiers in Pharmacology, Vol 14 (2024)

    الوصف: Relatlimab is a type of human immunoglobulin G4 monoclonal blocking antibody. It is the world’s first Lymphocyte-Activation Gene-3 (LAG-3) inhibitor and the third immune checkpoint inhibitor with clinical application, following PD-1 and CTLA-4. Relatlimab can bind to the LAG-3 receptor which blocks the interaction between LAG-3 and its ligand to reduce LAG-3 pathway-mediated immunosuppression and promote T-cell proliferation, inducing tumor cell death. On 18 March 2022, the U.S. FDA approved the fixed-dose combination of relatlimab developed by Bristol Myers Squibb with nivolumab, under the brand name Opdualag for the treatment of unresectable or metastatic melanoma in adult and pediatric patients aged 12 and older. This study comprehensively describes the mechanism of action and clinical trials of relatlimab and a brief overview of immune checkpoint drugs currently used for the treatment of melanoma.

    وصف الملف: electronic resource

  4. 14
    دورية أكاديمية

    المساهمون: Rivoltini, L, Camisaschi, C, Fucà, G, Paolini, B, Vergani, B, Beretta, V, Damian, S, Duca, M, Cresta, S, Magni, M, Leone, B, Castelli, C, de Braud, F, De Santis, F, Di Nicola, M

    مصطلحات موضوعية: triple-negative breast cancer, PD-1, LAG-3

    الوصف: In patients with advanced triple-negative breast cancer (TNBC), translational research efforts are needed to improve the clinical efficacy of immunotherapy with checkpoint inhibitors. Here, we report on the immunological characterization of an exceptional, long-lasting, tumor complete response in a patient with metastatic TNBC treated with dual PD-1 and LAG-3 blockade within the phase I/II study CLAG525X2101C (NCT02460224) The pre-treatment tumor biopsy revealed the presence of a CD3+ and CD8+ cell infiltrate, with few PD1+ cells, rare CD4+ cells, and an absence of both NK cells and LAG3 expression. Conversely, tumor cells exhibited positive staining for the three primary LAG-3 ligands (HLA-DR, FGL-1, and galectin-3), while being negative for PD-L1. In peripheral blood, baseline expression of LAG-3 and PD-1 was observed in circulating immune cells. Following treatment initiation, there was a rapid increase in proliferating granzyme-B+ NK and T cells, including CD4+ T cells, alongside a reduction in myeloid-derived suppressor cells. The role of LAG-3 expression on circulating NK cells, as well as the expression of LAG-3 ligands on tumor cells and the early modulation of circulating cytotoxic CD4+ T cells warrant further investigation as exploitable predictive biomarkers for dual PD-1 and LAG-3 blockade. Trial registration: NCT02460224. Registered 02/06/2015.

    وصف الملف: ELETTRONICO

    العلاقة: info:eu-repo/semantics/altIdentifier/pmid/38336861; info:eu-repo/semantics/altIdentifier/wos/WOS:001160750400058; volume:14; issue:1; journal:SCIENTIFIC REPORTS; https://hdl.handle.net/10281/460058Test; info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85184786154

  5. 15
    دورية أكاديمية

    المصدر: https://www.mdpi.com/2075-1729/14/5/551Test ; Life ; Volume 14 ; Issue 5 ; ISSN 2075-1729 (Online.

    الوصف: Hemorrhagic fever with renal syndrome (HFRS) is a rodent-borne disease widespread in Europe and Asia. HFRS is caused by negative-sensed single-stranded RNA orthohantaviruses transmitted to humans through inhaling aerosolized excreta of infected rodents. Symptoms of HFRS include acute kidney injury, thrombocytopenia, hemorrhages, and hypotension. The immune response raised against viral antigens plays an important role in the pathogenesis of HFRS. Inhibitory co-receptors are essential in regulating immune responses, mitigating immunopathogenesis, and reducing tissue damage. Our research showed an increased soluble form of inhibitory co-receptors TIM-3, LAG-3, and PD-1 in HFRS patients associated with disease severity. Our study aimed to investigate the impact of HFRS on the concentrations of soluble forms of inhibitory receptors TIM-3, LAG-3, and PD-1 in the patient’s serum and the potential correlation with key clinical parameters. Our study aimed to investigate the impact of HFRS on the concentrations of soluble forms of inhibitory receptors TIM-3, LAG-3, and PD-1 in the patient’s serum and their possible association with relevant clinical parameters. Using multiplex immunoassay, we found elevated levels of TIM-3, LAG-3, and PD-1 proteins in the serum of HFRS patients. Furthermore, increased levels were associated with creatinine, urea, lactate dehydrogenase concentrations, and platelet count. These findings suggest that these proteins play a role in regulating the immune response and disease progression.

    وصف الملف: application/pdf

    العلاقة: Sveučilište u Rijeci. Medicinski fakultet. Katedra za zarazne bolesti.; University of Rijeka. Faculty of Medicine. Department of Infectious Diseases.; https://www.unirepository.svkri.uniri.hr/islandora/object/medri:8567Test; https://urn.nsk.hr/urn:nbn:hr:184:230383Test; https://www.unirepository.svkri.uniri.hr/islandora/object/medri:8567/datastream/FILE0Test

  6. 16
    دورية أكاديمية

    الوقت: 610

    الوصف: LAG-3 is a type I transmembrane protein expressed on immune cells, such as activated T cells, and binds to MHC class II with high affinity. LAG-3 is an inhibitory receptor, and its multiple biological activities on T cell activation and effector functions play a regulatory role in the immune response. Immunotherapies directed at immune checkpoints, including LAG-3, have become a promising strategy for controlling malignant tumors and chronic viral diseases. Several studies have suggested an association between the expression of LAG-3 with an inadequate immune response during respiratory viral infections and the susceptibility to reinfections, which might be a consequence of the inhibition of T cell effector functions. However, important information relative to therapeutic potential during acute viral lower respiratory tract infections and the mechanism of action of the LAG-3 checkpoint remains to be characterized. In this article, we discuss the contribution of LAG-3 to the impairment of T cells during viral respiratory infections. Understanding the host immune response to respiratory infections is crucial for developing effective vaccines and therapies.

    وصف الملف: 15 páginas; application/pdf

  7. 17
    دورية أكاديمية

    المساهمون: Работы выполнена в рамках ФНИ № 122041500063-2

    المصدر: Medical Immunology (Russia); Online First ; Медицинская иммунология; Online First ; 2313-741X ; 1563-0625 ; 10.15789/1563-0625-0-0

    الوصف: Наружный генитальный эндометриоз – хроническое рецидивирующее заболевание, патогенез которого остается до конца не изученным. Эндометриоз делит общие черты с опухолевым процессом. Так, для данного заболевания характерно распространение ткани, подобной эндометрию, вне полости матки. Пролиферация и инвазия клеток в эктопических очагах возможна только при нарушении местных процессов иммунной защиты. Одним из механизмов избегания иммунологического надзора, доказанным для опухолевого процесса, является использование контрольных точек. Контрольные точки представляют собой белки, расположенные на поверхности клеток иммунной системы (преимущественно Т-лимфоцитов). Связывание контрольных точек с их лигандами на поверхности опухолевой клетки приводит к ингибированию клеток иммунитета и помогает таким образом опухоли «выжить». В данном обзоре собраны данные литературы об известных на сегодняшний день контрольных точках: CTLA-4, PD-1, LAG-3, Tim-3, TIGIT, 4-1BB, GITR. Рассмотрены наиболее изученные их лиганды такие как (CD80/CD86, PD-1L, Gal-3, Gal-9). В обзоре систематизированы данные о клетках, на которых экспрессируются контрольные точки и их белки с ними связывающиеся, приведены примеры опухолей, которые используют данное взаимодействие для защиты от распознавания. Помимо этого, в обзоре описаны препараты – ингибиторы контрольных точек, успешно используемые в терапии определенных опухолей. Наряду с отсутствием полноты знаний о патогенезе эндометриоза, на сегодняшний день единственным достоверным методом его диагностики является проведение лапароскопии с визуализацией очагов и последующим их гистологическим исследованием. В обзоре собраны результаты исследований, посвященных изучению некоторых биомаркеров для неинвазивной диагностики эндометриоза: CA-125, MCP-1, IL-6, BDNF и других. Авторами рассмотрены результаты нескольких работ, в которых иммунные контрольные точки изучались в аспекте наружного генитального эндометриоза. Следует подчеркнуть, что по результатам этих исследований экспрессия контрольных точек ...

    وصف الملف: application/pdf

    العلاقة: https://www.mimmun.ru/mimmun/article/view/2923/1920Test; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2923/13088Test; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2923/13089Test; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2923/13090Test; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2923/13091Test; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2923/13092Test; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2923/13093Test; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2923/13094Test; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2923/13134Test; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2923/13135Test; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2923/13155Test; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2923/13156Test; https://www.mimmun.ru/mimmun/article/downloadSuppFile/2923/13546Test; Abramiuk M., Bebnowska D., Hrynkiewicz R., Polak P.N.G., Kotarski J., Rolinski J.,Grywalska E. CLTA-4 Expression is Associated with the Maintenance of Chronic Inflammation in Endometriosis and Infertility. Cells, 2021, Vol.10, no 3. [10.3390/cells10030487] https://www.ncbi.nlm.nih.gov/pubmed/33668701Test; Abramiuk M., Frankowska K., Kulak K., Tarkowski R., Mertowska P., Mertowski S.,Grywalska E. Possible Correlation between Urocortin 1 (Ucn1) and Immune Parameters in Patients with Endometriosis. Int J Mol Sci, 2023, Vol.24, no 9. [10.3390/ijms24097787] https://www.ncbi.nlm.nih.gov/pubmed/37175494Test; Agic A., Djalali S., Wolfler M.M., Halis G., Diedrich K.,Hornung D. Combination of CCR1 mRNA, MCP1, and CA125 measurements in peripheral blood as a diagnostic test for endometriosis. Reprod Sci, 2008, Vol.15, no 9, pp. 906-11. [10.1177/1933719108318598] https://www.ncbi.nlm.nih.gov/pubmed/19050323Test; Akhtar K., Sravanthi M.V., D'Angelo J.,Sivapiragasam A. Cemiplimab for Locally Advanced Cutaneous Squamous Cell Carcinoma: A Case Series of 3 Unique Scenarios. J Investig Med High Impact Case Rep, 2022, Vol.10, no, pp. 23247096221121408. [10.1177/23247096221121408] https://www.ncbi.nlm.nih.gov/pubmed/36017984Test; Akinboro O., Larkins E., Pai-Scherf L.H., Mathieu L.N., Ren Y., Cheng J., Fiero M.H., Fu W., Bi Y., Kalavar S., Jafri S., Mishra-Kalyani P.S., Fourie Zirkelbach J., Li H., Zhao H., He K., Helms W.S., Chuk M.K., Wang M., Bulatao I., Herz J., Osborn B.L., Xu Y., Liu J., Gong Y., Sickafuse S., Cohen R., Donoghue M., Pazdur R., Beaver J.A.,Singh H. FDA Approval Summary: Pembrolizumab, Atezolizumab, and Cemiplimab-rwlc as Single Agents for First-Line Treatment of Advanced/Metastatic PD-L1-High NSCLC. Clin Cancer Res, 2022, Vol.28, no 11, pp. 2221-2228. [10.1158/1078-0432.CCR-21-3844] https://www.ncbi.nlm.nih.gov/pubmed/35101885Test; Alsharedi M., Srivastava R.,Elmsherghi N. Durvalumab for the treatment of urothelial carcinoma. Drugs Today (Barc), 2017, Vol.53, no 12, pp. 647-652. [10.1358/dot.2017.53.12.2733054] https://www.ncbi.nlm.nih.gov/pubmed/29517083Test; Anglesio M.S., Papadopoulos N., Ayhan A., Nazeran T.M., Noe M., Horlings H.M., Lum A., Jones S., Senz J., Seckin T., Ho J., Wu R.C., Lac V., Ogawa H., Tessier-Cloutier B., Alhassan R., Wang A., Wang Y., Cohen J.D., Wong F., Hasanovic A., Orr N., Zhang M., Popoli M., McMahon W., Wood L.D., Mattox A., Allaire C., Segars J., Williams C., Tomasetti C., Boyd N., Kinzler K.W., Gilks C.B., Diaz L., Wang T.L., Vogelstein B., Yong P.J., Huntsman D.G.,Shih I.M. Cancer-Associated Mutations in Endometriosis without Cancer. N Engl J Med, 2017, Vol.376, no 19, pp. 1835-1848. [10.1056/NEJMoa1614814] https://www.ncbi.nlm.nih.gov/pubmed/28489996Test; Arabpour M., Ghods A., Shariat M., Talei A.R., Mehdipour F.,Ghaderi A. Correlation of 4-1BBL+ B Cells in Tumor Draining Lymph Nodes with Pathological Characteristics of Breast Cancer. Iran J Immunol, 2019, Vol.16, no 2, pp. 108-116. [10.22034/IJI.2019.80254] https://www.ncbi.nlm.nih.gov/pubmed/31182685Test; Atkinson V., Khattak A., Haydon A., Eastgate M., Roy A., Prithviraj P., Mueller C., Brignone C.,Triebel F. Eftilagimod alpha, a soluble lymphocyte activation gene-3 (LAG-3) protein plus pembrolizumab in patients with metastatic melanoma. J Immunother Cancer, 2020, Vol.8, no 2. [10.1136/jitc-2020-001681] https://www.ncbi.nlm.nih.gov/pubmed/33219094Test; Azimnasab-Sorkhabi P., Soltani-Asl M.,Kfoury Junior J.R. Cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) as an undetermined tool in tumor cells. Hum Cell, 2023, Vol.36, no 4, pp. 1225-1232. [10.1007/s13577-023-00893-8] https://www.ncbi.nlm.nih.gov/pubmed/36907978Test; Baptista M.Z., Sarian L.O., Derchain S.F., Pinto G.A.,Vassallo J. Prognostic significance of PD-L1 and PD-L2 in breast cancer. Hum Pathol, 2016, Vol.47, no 1, pp. 78-84. [10.1016/j.humpath.2015.09.006] https://www.ncbi.nlm.nih.gov/pubmed/26541326Test; Bardhan K., Anagnostou T.,Boussiotis V.A. The PD1:PD-L1/2 Pathway from Discovery to Clinical Implementation. Front Immunol, 2016, Vol.7, no, pp. 550. [10.3389/fimmu.2016.00550] https://www.ncbi.nlm.nih.gov/pubmed/28018338Test; Barra F., Ferro Desideri L., Leone Roberti Maggiore U., Gaetano Vellone V., Maramai M., Scala C.,Ferrero S. Endometriosis Classification and The Role of Tumor Necrosis Factor-Alpha Polymorphisms as A Therapeutic Target. Int J Fertil Steril, 2020, Vol.14, no 1, pp. 76-77. [10.22074/ijfs.2020.5876] https://www.ncbi.nlm.nih.gov/pubmed/32112641Test; Bartkowiak T.,Curran M.A. 4-1BB Agonists: Multi-Potent Potentiators of Tumor Immunity. Front Oncol, 2015, Vol.5, no, pp. 117. [10.3389/fonc.2015.00117] https://www.ncbi.nlm.nih.gov/pubmed/26106583Test; Bettini M., Szymczak-Workman A.L., Forbes K., Castellaw A.H., Selby M., Pan X., Drake C.G., Korman A.J.,Vignali D.A. Cutting edge: accelerated autoimmune diabetes in the absence of LAG-3. J Immunol, 2011, Vol.187, no 7, pp. 3493-8. [10.4049/jimmunol.1100714] https://www.ncbi.nlm.nih.gov/pubmed/21873518Test; Borrelli G.M., Abrao M.S.,Mechsner S. Can chemokines be used as biomarkers for endometriosis? A systematic review. Hum Reprod, 2014, Vol.29, no 2, pp. 253-66. [10.1093/humrep/det401] https://www.ncbi.nlm.nih.gov/pubmed/24287816Test; Brinton L.A., Gridley G., Persson I., Baron J.,Bergqvist A. Cancer risk after a hospital discharge diagnosis of endometriosis. Am J Obstet Gynecol, 1997, Vol.176, no 3, pp. 572-9. [10.1016/s0002-9378(97)70550-7] https://www.ncbi.nlm.nih.gov/pubmed/9077609Test; Brinton L.A., Sakoda L.C., Sherman M.E., Frederiksen K., Kjaer S.K., Graubard B.I., Olsen J.H.,Mellemkjaer L. Relationship of benign gynecologic diseases to subsequent risk of ovarian and uterine tumors. Cancer Epidemiol Biomarkers Prev, 2005, Vol.14, no 12, pp. 2929-35. [10.1158/1055-9965.EPI-05-0394] https://www.ncbi.nlm.nih.gov/pubmed/16365012Test; Brubel R., Bokor A., Pohl A., Schilli G.K., Szereday L., Bacher-Szamuel R., Rigo J., Jr.,Polgar B. Serum galectin-9 as a noninvasive biomarker for the detection of endometriosis and pelvic pain or infertility-related gynecologic disorders. Fertil Steril, 2017, Vol.108, no 6, pp. 1016-1025 e2. [10.1016/j.fertnstert.2017.09.008] https://www.ncbi.nlm.nih.gov/pubmed/29202955Test; Burghaus S., Drazic P., Wolfler M., Mechsner S., Zeppernick M., Meinhold-Heerlein I., Mueller M.D., Rothmund R., Vigano P., Becker C.M., Zondervan K.T., Beckmann M.W., Fasching P.A., Berner-Gatz S., Grunewald F.S., Hund M., Kastner P., Klammer M., Laubender R.P., Wegmeyer H., Wienhues-Thelen U.H.,Renner S.P. Multicenter evaluation of blood-based biomarkers for the detection of endometriosis and adenomyosis: A prospective non-interventional study. Int J Gynaecol Obstet, 2023 no. [10.1002/ijgo.15062] https://www.ncbi.nlm.nih.gov/pubmed/37635683Test; Cakir Y., Talu C.K., Trabulus D.C.,Mermut O. The immunohistochemical Galectin-3 expression in tumor and cancer-associated fibroblasts in invasive ductal carcinomas of breast and their relationship with clinicopathological parameters. Indian J Pathol Microbiol, 2023, Vol.66, no 3, pp. 456-464. [10.4103/ijpm.ijpm_284_21] https://www.ncbi.nlm.nih.gov/pubmed/37530324Test; Canales Rojas R. Update on immunotherapy for renal cancer. Medwave, 2021, Vol.21, no 5, pp. e8202. [10.5867/medwave.2021.05.8202] https://www.ncbi.nlm.nih.gov/pubmed/34214067Test; Cao Y., Zhou X., Huang X., Li Q., Gao L., Jiang L., Huang M.,Zhou J. Tim-3 expression in cervical cancer promotes tumor metastasis. PLoS One, 2013, Vol.8, no 1, pp. e53834. [10.1371/journal.pone.0053834] https://www.ncbi.nlm.nih.gov/pubmed/23335978Test; Caserta D., Di Benedetto L., Bordi G., D'Ambrosio A.,Moscarini M. Levels of Galectin-3 and Stimulation Expressed Gene 2 in the peritoneal fluid of women with endometriosis: a pilot study. Gynecol Endocrinol, 2014, Vol.30, no 12, pp. 877-80. [10.3109/09513590.2014.943728] https://www.ncbi.nlm.nih.gov/pubmed/25069762Test; Chambers C.A., Kuhns M.S., Egen J.G.,Allison J.P. CTLA-4-mediated inhibition in regulation of T cell responses: mechanisms and manipulation in tumor immunotherapy. Annu Rev Immunol, 2001, Vol.19, no, pp. 565-94. [10.1146/annurev.immunol.19.1.565] https://www.ncbi.nlm.nih.gov/pubmed/11244047Test; Chattopadhyay S.,Chakraborty N.G. GITR expression on T-cell receptor-stimulated human CD8 T cell in a JNK-dependent pathway. Indian J Hum Genet, 2009, Vol.15, no 3, pp. 121-4. [10.4103/0971-6866.60188] https://www.ncbi.nlm.nih.gov/pubmed/21088717Test; Chen S., Liu Y., Zhong Z., Wei C., Liu Y.,Zhu X. Peritoneal immune microenvironment of endometriosis: Role and therapeutic perspectives. Front Immunol, 2023, Vol.14, no, pp. 1134663. [10.3389/fimmu.2023.1134663] https://www.ncbi.nlm.nih.gov/pubmed/36865552Test; https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9971222/pdf/fimmu-14-1134663.pdfTest; Chen T., Wei J.L., Leng T., Gao F.,Hou S.Y. The diagnostic value of the combination of hemoglobin, CA199, CA125, and HE4 in endometriosis. J Clin Lab Anal, 2021, Vol.35, no 9, pp. e23947. [10.1002/jcla.23947] https://www.ncbi.nlm.nih.gov/pubmed/34405450Test; Chen W.C., Cheng C.M., Liao W.T.,Chang T.C. Urinary Biomarkers for Detection of Clinical Endometriosis or Adenomyosis. Biomedicines, 2022, Vol.10, no 4. [10.3390/biomedicines10040833] https://www.ncbi.nlm.nih.gov/pubmed/35453583Test; https://mdpi-res.com/d_attachment/biomedicines/biomedicines-10-00833/article_deploy/biomedicines-10-00833.pdf?version=1648819036Test; Chen X., Du Y., Hu Q.,Huang Z. Tumor-derived CD4+CD25+regulatory T cells inhibit dendritic cells function by CTLA-4. Pathol Res Pract, 2017, Vol.213, no 3, pp. 245-249. [10.1016/j.prp.2016.12.008] https://www.ncbi.nlm.nih.gov/pubmed/28214198Test; Chen Z., Huang J., Kwak-Kim J.,Wang W. Immune checkpoint inhibitors and reproductive failures. J Reprod Immunol, 2023, Vol.156, no, pp. 103799. [10.1016/j.jri.2023.103799] https://www.ncbi.nlm.nih.gov/pubmed/36724630Test; Cheng L.S., Cheng Y.F., Liu W.T., Shen A., Zhang D., Xu T., Yin W., Cheng M., Ma X., Wang F., Zhao Q., Zeng X., Zhang Y.,Shen G. A humanized 4-1BB-targeting agonistic antibody exerts potent antitumor activity in colorectal cancer without systemic toxicity. J Transl Med, 2022, Vol.20, no 1, pp. 415. [10.1186/s12967-022-03619-w] https://www.ncbi.nlm.nih.gov/pubmed/36076251Test; Chester C., Ambulkar S.,Kohrt H.E. 4-1BB agonism: adding the accelerator to cancer immunotherapy. Cancer Immunol Immunother, 2016, Vol.65, no 10, pp. 1243-8. [10.1007/s00262-016-1829-2] https://www.ncbi.nlm.nih.gov/pubmed/27034234Test; Chester C., Sanmamed M.F., Wang J.,Melero I. Immunotherapy targeting 4-1BB: mechanistic rationale, clinical results, and future strategies. Blood, 2018, Vol.131, no 1, pp. 49-57. [10.1182/blood-2017-06-741041] https://www.ncbi.nlm.nih.gov/pubmed/29118009Test; Choi Y.S., Kim S., Oh Y.S., Cho S.,Hoon Kim S. Elevated serum interleukin-32 levels in patients with endometriosis: A cross-sectional study. Am J Reprod Immunol, 2019, Vol.82, no 2, pp. e13149. [10.1111/aji.13149] https://www.ncbi.nlm.nih.gov/pubmed/31099938Test; Claus C., Ferrara-Koller C.,Klein C. The emerging landscape of novel 4-1BB (CD137) agonistic drugs for cancer immunotherapy. MAbs, 2023, Vol.15, no 1, pp. 2167189. [10.1080/19420862.2023.2167189] https://www.ncbi.nlm.nih.gov/pubmed/36727218Test; Collins J.M.,Gulley J.L. Product review: avelumab, an anti-PD-L1 antibody. Hum Vaccin Immunother, 2019, Vol.15, no 4, pp. 891-908. [10.1080/21645515.2018.1551671] https://www.ncbi.nlm.nih.gov/pubmed/30481100Test; Contardi E., Palmisano G.L., Tazzari P.L., Martelli A.M., Fala F., Fabbi M., Kato T., Lucarelli E., Donati D., Polito L., Bolognesi A., Ricci F., Salvi S., Gargaglione V., Mantero S., Alberghini M., Ferrara G.B.,Pistillo M.P. CTLA-4 is constitutively expressed on tumor cells and can trigger apoptosis upon ligand interaction. Int J Cancer, 2005, Vol.117, no 4, pp. 538-50. [10.1002/ijc.21155] https://www.ncbi.nlm.nih.gov/pubmed/15912538Test; Daud A.I., Wolchok J.D., Robert C., Hwu W.J., Weber J.S., Ribas A., Hodi F.S., Joshua A.M., Kefford R., Hersey P., Joseph R., Gangadhar T.C., Dronca R., Patnaik A., Zarour H., Roach C., Toland G., Lunceford J.K., Li X.N., Emancipator K., Dolled-Filhart M., Kang S.P., Ebbinghaus S.,Hamid O. Programmed Death-Ligand 1 Expression and Response to the Anti-Programmed Death 1 Antibody Pembrolizumab in Melanoma. J Clin Oncol, 2016, Vol.34, no 34, pp. 4102-4109. [10.1200/JCO.2016.67.2477] https://www.ncbi.nlm.nih.gov/pubmed/27863197Test; De Mello R.A.B., Voscaboinik R., Luciano J.V.P., Cremonese R.V., Amaral G.A., Castelo-Branco P.,Antoniou G. Immunotherapy in Patients with Advanced Non-Small Cell Lung Cancer Lacking Driver Mutations and Future Perspectives. Cancers (Basel), 2021, Vol.14, no 1. [10.3390/cancers14010122] https://www.ncbi.nlm.nih.gov/pubmed/35008287Test; Duan X., Liu J., Cui J., Ma B., Zhou Q., Yang X., Lu Z., Du Y.,Su C. Expression of TIGIT/CD155 and correlations with clinical pathological features in human hepatocellular carcinoma. Mol Med Rep, 2019, Vol.20, no 4, pp. 3773-3781. [10.3892/mmr.2019.10641] https://www.ncbi.nlm.nih.gov/pubmed/31485637Test; Dumic J., Dabelic S.,Flogel M. Galectin-3: an open-ended story. Biochim Biophys Acta, 2006, Vol.1760, no 4, pp. 616-35. [10.1016/j.bbagen.2005.12.020] https://www.ncbi.nlm.nih.gov/pubmed/16478649Test; Eggermont A.M.,Robert C. New drugs in melanoma: it's a whole new world. Eur J Cancer, 2011, Vol.47, no 14, pp. 2150-7. [10.1016/j.ejca.2011.06.052] https://www.ncbi.nlm.nih.gov/pubmed/21802280Test; Eurich K., De La Cruz P., Laguna A., Woodman M., McAdams J., Lips E., Ebott J., DiSilvestro J., Ribeiro J.,James N. Multiplex serum immune profiling reveals circulating LAG-3 is associated with improved patient survival in high grade serous ovarian cancer. Gynecol Oncol, 2023, Vol.174, no, pp. 200-207. [10.1016/j.ygyno.2023.05.015] https://www.ncbi.nlm.nih.gov/pubmed/37224792Test; Finkelmeier F., Waidmann O.,Trojan J. Nivolumab for the treatment of hepatocellular carcinoma. Expert Rev Anticancer Ther, 2018, Vol.18, no 12, pp. 1169-1175. [10.1080/14737140.2018.1535315] https://www.ncbi.nlm.nih.gov/pubmed/30304963Test; Geng H., Zhang G.M., Xiao H., Yuan Y., Li D., Zhang H., Qiu H., He Y.F.,Feng Z.H. HSP70 vaccine in combination with gene therapy with plasmid DNA encoding sPD-1 overcomes immune resistance and suppresses the progression of pulmonary metastatic melanoma. Int J Cancer, 2006, Vol.118, no 11, pp. 2657-64. [10.1002/ijc.21795] https://www.ncbi.nlm.nih.gov/pubmed/16425224Test; Gu Q., Li J., Chen Z., Zhang J., Shen H., Miao X., Zhou Y., Xu X.,He S. Expression and Prognostic Significance of PD-L2 in Diffuse Large B-Cell Lymphoma. Front Oncol, 2021, Vol.11, no, pp. 664032. [10.3389/fonc.2021.664032] https://www.ncbi.nlm.nih.gov/pubmed/34178648Test; Guney G., Taskin M.I., Lagana A.S., Tolu E., Aslan F., Hismiogullari A.A.,Kaya C. Neutrophil gelatinase-associated lipocalin serum level: A potential noninvasive biomarker of endometriosis? Medicine (Baltimore), 2023, Vol.102, no 41, pp. e35539. [10.1097/MD.0000000000035539] https://www.ncbi.nlm.nih.gov/pubmed/37832065Test; Guo B., Chen J.H., Zhang J.H., Fang Y., Liu X.J., Zhang J., Zhu H.Q.,Zhan L. Pattern-recognition receptors in endometriosis: A narrative review. Front Immunol, 2023, Vol.14, no, pp. 1161606. [10.3389/fimmu.2023.1161606] https://www.ncbi.nlm.nih.gov/pubmed/37033937Test; Gurney A.L., Marsters S.A., Huang R.M., Pitti R.M., Mark D.T., Baldwin D.T., Gray A.M., Dowd A.D., Brush A.D., Heldens A.D., Schow A.D., Goddard A.D., Wood W.I., Baker K.P., Godowski P.J.,Ashkenazi A. Identification of a new member of the tumor necrosis factor family and its receptor, a human ortholog of mouse GITR. Curr Biol, 1999, Vol.9, no 4, pp. 215-8. [10.1016/s0960-9822(99)80093-1] https://www.ncbi.nlm.nih.gov/pubmed/10074428Test; Hafler D.A.,Kuchroo V. TIMs: central regulators of immune responses. J Exp Med, 2008, Vol.205, no 12, pp. 2699-701. [10.1084/jem.20082429] https://www.ncbi.nlm.nih.gov/pubmed/19015312Test; Hamanishi J., Mandai M., Iwasaki M., Okazaki T., Tanaka Y., Yamaguchi K., Higuchi T., Yagi H., Takakura K., Minato N., Honjo T.,Fujii S. Programmed cell death 1 ligand 1 and tumor-infiltrating CD8+ T lymphocytes are prognostic factors of human ovarian cancer. Proc Natl Acad Sci U S A, 2007, Vol.104, no 9, pp. 3360-5. [10.1073/pnas.0611533104] https://www.ncbi.nlm.nih.gov/pubmed/17360651Test; He Y., Jia K., Dziadziuszko R., Zhao S., Zhang X., Deng J., Wang H., Hirsch F.R.,Zhou C. Galectin-9 in non-small cell lung cancer. Lung Cancer, 2019, Vol.136, no, pp. 80-85. [10.1016/j.lungcan.2019.08.014] https://www.ncbi.nlm.nih.gov/pubmed/31454748Test; He Y., Rivard C.J., Rozeboom L., Yu H., Ellison K., Kowalewski A., Zhou C.,Hirsch F.R. Lymphocyte-activation gene-3, an important immune checkpoint in cancer. Cancer Sci, 2016, Vol.107, no 9, pp. 1193-7. [10.1111/cas.12986] https://www.ncbi.nlm.nih.gov/pubmed/27297395Test; Hemon P., Jean-Louis F., Ramgolam K., Brignone C., Viguier M., Bachelez H., Triebel F., Charron D., Aoudjit F., Al-Daccak R.,Michel L. MHC class II engagement by its ligand LAG-3 (CD223) contributes to melanoma resistance to apoptosis. J Immunol, 2011, Vol.186, no 9, pp. 5173-83. [10.4049/jimmunol.1002050] https://www.ncbi.nlm.nih.gov/pubmed/21441454Test; Henry L., Vervier J., Boucher A., Brichant G., Gaspard O., Labied S., Munaut C., Ravet S.,Nisolle M. Oocyte Cryopreservation in Patients with Endometriosis: Current Knowledge and Number Needed to Treat. J Clin Med, 2022, Vol.11, no 15. [10.3390/jcm11154559] https://www.ncbi.nlm.nih.gov/pubmed/35956174Test; Hong J.H., Cho H.W., Ouh Y.T., Lee J.K.,Chun Y. Lymphocyte activation gene (LAG)-3 is a potential immunotherapeutic target for microsatellite stable, programmed death-ligand 1 (PD-L1)-positive endometrioid endometrial cancer. J Gynecol Oncol, 2023, Vol.34, no 2, pp. e18. [10.3802/jgo.2023.34.e18] https://www.ncbi.nlm.nih.gov/pubmed/36509464Test; Huang R.Y., Francois A., McGray A.R., Miliotto A.,Odunsi K. Compensatory upregulation of PD-1, LAG-3, and CTLA-4 limits the efficacy of single-agent checkpoint blockade in metastatic ovarian cancer. Oncoimmunology, 2017, Vol.6, no 1, pp. e1249561. [10.1080/2162402X.2016.1249561] https://www.ncbi.nlm.nih.gov/pubmed/28197366Test; Huo J.L., Wang Y.T., Fu W.J., Lu N.,Liu Z.S. The promising immune checkpoint LAG-3 in cancer immunotherapy: from basic research to clinical application. Front Immunol, 2022, Vol.13, no, pp. 956090. [10.3389/fimmu.2022.956090] https://www.ncbi.nlm.nih.gov/pubmed/35958563Test; Incognito G.G., Di Guardo F., Gulino F.A., Genovese F., Benvenuto D., Lello C.,Palumbo M. Interleukin-6 as A Useful Predictor of Endometriosis-Associated Infertility: A Systematic Review. Int J Fertil Steril, 2023, Vol.17, no 4, pp. 226-230. [10.22074/ijfs.2023.557683.1329] https://www.ncbi.nlm.nih.gov/pubmed/37577903Test; Jansa V., Pusic Novak M., Ban Frangez H.,Rizner T.L. TGFBI as a candidate biomarker for non-invasive diagnosis of early-stage endometriosis. Hum Reprod, 2023, Vol.38, no 7, pp. 1284-1296. [10.1093/humrep/dead091] https://www.ncbi.nlm.nih.gov/pubmed/37187159Test; Jarollahi S., Chaichian S., Jarollahi A., Hajmohammadi R., Mashayekhi R., Shahmohammadi F., Eslamivaghar M.,Ghasemi Z. The Diagnostic Accuracy of Galectin-9 for Diagnosis of Endometriosis in Comparison with Laparoscopy. J Reprod Infertil, 2022, Vol.23, no 4, pp. 271-278. [10.18502/jri.v23i4.10812] https://www.ncbi.nlm.nih.gov/pubmed/36452187Test; https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9674464/pdf/JRI-23-271.pdfTest; Jeung I., Cheon K.,Kim M.R. Decreased Cytotoxicity of Peripheral and Peritoneal Natural Killer Cell in Endometriosis. Biomed Res Int, 2016, Vol.2016, no, pp. 2916070. [10.1155/2016/2916070] https://www.ncbi.nlm.nih.gov/pubmed/27294113Test; Jiang J., Jiang Z.,Xue M. Serum and peritoneal fluid levels of interleukin-6 and interleukin-37 as biomarkers for endometriosis. Gynecol Endocrinol, 2019, Vol.35, no 7, pp. 571-575. [10.1080/09513590.2018.1554034] https://www.ncbi.nlm.nih.gov/pubmed/30632819Test; Jolicoeur C., Boutouil M., Drouin R., Paradis I., Lemay A.,Akoum A. Increased expression of monocyte chemotactic protein-1 in the endometrium of women with endometriosis. Am J Pathol, 1998, Vol.152, no 1, pp. 125-33. https://www.ncbi.nlm.nih.gov/pubmed/9422530Test; Kang C. Retifanlimab: First Approval. Drugs, 2023, Vol.83, no 8, pp. 731-737. [10.1007/s40265-023-01884-7] https://www.ncbi.nlm.nih.gov/pubmed/37184754Test; Kang Y.J., Jeung I.C., Park A., Park Y.J., Jung H., Kim T.D., Lee H.G., Choi I.,Yoon S.R. An increased level of IL-6 suppresses NK cell activity in peritoneal fluid of patients with endometriosis via regulation of SHP-2 expression. Hum Reprod, 2014, Vol.29, no 10, pp. 2176-89. [10.1093/humrep/deu172] http://www.ncbi.nlm.nih.gov/pubmed/25035432Test; Kaya C., Alay I., Guraslan H., Gedikbasi A., Ekin M., Ertas Kaya S., Oral E.,Yasar L. The Role of Serum Caspase 3 Levels in Prediction of Endometriosis Severity. Gynecol Obstet Invest, 2018, Vol.83, no 6, pp. 576-585. [10.1159/000489494] https://www.ncbi.nlm.nih.gov/pubmed/30071521Test; Keir M.E., Butte M.J., Freeman G.J.,Sharpe A.H. PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol, 2008, Vol.26, no, pp. 677-704. [10.1146/annurev.immunol.26.021607.090331] https://www.ncbi.nlm.nih.gov/pubmed/18173375Test; Kimber-Trojnar Z., Pilszyk A., Niebrzydowska M., Pilszyk Z., Ruszala M.,Leszczynska-Gorzelak B. The Potential of Non-Invasive Biomarkers for Early Diagnosis of Asymptomatic Patients with Endometriosis. J Clin Med, 2021, Vol.10, no 13. [10.3390/jcm10132762] https://www.ncbi.nlm.nih.gov/pubmed/34201813Test; Kong F., Jin M., Cao D., Jia Z., Liu Y.,Jiang J. Galectin-3 not Galectin-9 as a candidate prognosis marker for hepatocellular carcinoma. PeerJ, 2020, Vol.8, no, pp. e9949. [10.7717/peerj.9949] https://www.ncbi.nlm.nih.gov/pubmed/32995093Test; Kovalak E.E., Karacan T., Zengi O., Karabay Akgul O., Ozyurek S.E.,Guraslan H. Evaluation of new biomarkers in stage III and IV endometriosis. Gynecol Endocrinol, 2023, Vol.39, no 1, pp. 2217290. [10.1080/09513590.2023.2217290] https://www.ncbi.nlm.nih.gov/pubmed/37236244Test; Krummel M.F.,Allison J.P. CD28 and CTLA-4 have opposing effects on the response of T cells to stimulation. J Exp Med, 1995, Vol.182, no 2, pp. 459-65. [10.1084/jem.182.2.459] https://www.ncbi.nlm.nih.gov/pubmed/7543139Test; Laudanski P., Rogalska G., Warzecha D., Lipa M., Manka G., Kiecka M., Spaczynski R., Piekarski P., Banaszewska B., Jakimiuk A., Issat T., Rokita W., Mlodawski J., Szubert M., Sieroszewski P., Raba G., Szczupak K., Kluz T., Kluza M., Neuman T., Adler P., Peterson H., Salumets A.,Wielgos M. Autoantibody screening of plasma and peritoneal fluid of patients with endometriosis. Hum Reprod, 2023, Vol.38, no 4, pp. 629-643. [10.1093/humrep/dead011] https://www.ncbi.nlm.nih.gov/pubmed/36749097Test; Lee M.Y., Kim S.H., Oh Y.S., Heo S.H., Kim K.H., Chae H.D., Kim C.H.,Kang B.M. Role of interleukin-32 in the pathogenesis of endometriosis: in vitro, human and transgenic mouse data. Hum Reprod, 2018, Vol.33, no 5, pp. 807-816. [10.1093/humrep/dey055] https://www.ncbi.nlm.nih.gov/pubmed/29562285Test; Li C., Zhou J., Shao J., Yuan L., Cheng Q., Wang L.,Duan Z. Decrease in CD226 expression on CD4(+) T cells in patients with endometriosis. Biosci Trends, 2023, Vol.17, no 2, pp. 168-171. [10.5582/bst.2022.01501] https://www.ncbi.nlm.nih.gov/pubmed/37081668Test; Li J., Yan S., Li Q., Huang Y., Ji M., Jiao X., Yuan M.,Wang G. Macrophage-associated immune checkpoint CD47 blocking ameliorates endometriosis. Mol Hum Reprod, 2022, Vol.28, no 5. [10.1093/molehr/gaac010] https://www.ncbi.nlm.nih.gov/pubmed/35404426Test; Li Y., Zhang J., Zhang D., Hong X., Tao Y., Wang S., Xu Y., Piao H., Yin W., Yu M., Zhang Y., Fu Q., Li D., Chang X.,Du M. Tim-3 signaling in peripheral NK cells promotes maternal-fetal immune tolerance and alleviates pregnancy loss. Sci Signal, 2017, Vol.10, no 498. [10.1126/scisignal.aah4323] https://www.ncbi.nlm.nih.gov/pubmed/28951537Test; Liu Q., Ma P., Liu L., Ma G., Ma J., Liu X., Liu Y., Lin W.,Zhu Y. Evaluation of PLGA containing anti-CTLA4 inhibited endometriosis progression by regulating CD4+CD25+Treg cells in peritoneal fluid of mouse endometriosis model. Eur J Pharm Sci, 2017, Vol.96, no, pp. 542-550. [10.1016/j.ejps.2016.10.031] https://www.ncbi.nlm.nih.gov/pubmed/27989857Test; Lozano E., Dominguez-Villar M., Kuchroo V.,Hafler D.A. The TIGIT/CD226 axis regulates human T cell function. J Immunol, 2012, Vol.188, no 8, pp. 3869-75. [10.4049/jimmunol.1103627] https://www.ncbi.nlm.nih.gov/pubmed/22427644Test; Mahnke K.,Enk A.H. TIGIT-CD155 Interactions in Melanoma: A Novel Co-Inhibitory Pathway with Potential for Clinical Intervention. J Invest Dermatol, 2016, Vol.136, no 1, pp. 9-11. [10.1016/j.jid.2015.10.048] https://www.ncbi.nlm.nih.gov/pubmed/26763417Test; Man Y., Dai C., Guo Q., Jiang L.,Shi Y. A novel PD-1/PD-L1 pathway molecular typing-related signature for predicting prognosis and the tumor microenvironment in breast cancer. Discov Oncol, 2023, Vol.14, no 1, pp. 59. [10.1007/s12672-023-00669-4] https://www.ncbi.nlm.nih.gov/pubmed/37154982Test; Martin-Liberal J., Kordbacheh T.,Larkin J. Safety of pembrolizumab for the treatment of melanoma. Expert Opin Drug Saf, 2015, Vol.14, no 6, pp. 957-64. [10.1517/14740338.2015.1021774] https://www.ncbi.nlm.nih.gov/pubmed/25927979Test; Martire F.G., Russo C., Selntigia A., Nocita E., Soreca G., Lazzeri L., Zupi E.,Exacoustos C. Early noninvasive diagnosis of endometriosis: dysmenorrhea and specific ultrasound findings are important indicators in young women. Fertil Steril, 2023, Vol.119, no 3, pp. 455-464. [10.1016/j.fertnstert.2022.12.004] https://www.ncbi.nlm.nih.gov/pubmed/36493871Test; Maruhashi T., Sugiura D., Okazaki I.M.,Okazaki T. LAG-3: from molecular functions to clinical applications. J Immunother Cancer, 2020, Vol.8, no 2. [10.1136/jitc-2020-001014] https://www.ncbi.nlm.nih.gov/pubmed/32929051Test; Matalliotakis I., Neonaki M., Zolindaki A., Hassan E., Georgoulias V.,Koumantakis E. Changes in immunologic variables (TNF-a, sCD8 and sCD4) during danazol treatment in patients with endometriosis. Int J Fertil Womens Med, 1997, Vol.42, no 3, pp. 211-4. https://www.ncbi.nlm.nih.gov/pubmed/9222806Test; Matsubara E., Shinchi Y., Komohara Y., Yano H., Pan C., Fujiwara Y., Ikeda K.,Suzuki M. PD-L2 overexpression on tumor-associated macrophages is one of the predictors for better prognosis in lung adenocarcinoma. Med Mol Morphol, 2023 no. [10.1007/s00795-023-00361-0] https://www.ncbi.nlm.nih.gov/pubmed/37402054Test; Meggyes M., Szereday L., Bohonyi N., Koppan M., Szegedi S., Marics-Kutas A., Marton M., Totsimon A.,Polgar B. Different Expression Pattern of TIM-3 and Galectin-9 Molecules by Peripheral and Peritoneal Lymphocytes in Women with and without Endometriosis. Int J Mol Sci, 2020, Vol.21, no 7. [10.3390/ijms21072343] https://www.ncbi.nlm.nih.gov/pubmed/32231038Test; https://mdpi-res.com/d_attachment/ijms/ijms-21-02343/article_deploy/ijms-21-02343-v2.pdf?version=1585549834Test; Mikus M., Goldstajn M.S., Brlecic I., Dumancic S., Lagana A.S., Chiantera V., Vujic G.,Coric M. CTLA4-Linked Autoimmunity in the Pathogenesis of Endometriosis and Related Infertility: A Systematic Review. Int J Mol Sci, 2022, Vol.23, no 18. [10.3390/ijms231810902] https://www.ncbi.nlm.nih.gov/pubmed/36142815Test; Motamedi M., Shahbaz S., Fu L., Dunsmore G., Xu L., Harrington R., Houston S.,Elahi S. Galectin-9 Expression Defines a Subpopulation of NK Cells with Impaired Cytotoxic Effector Molecules but Enhanced IFN-gamma Production, Dichotomous to TIGIT, in HIV-1 Infection. Immunohorizons, 2019, Vol.3, no 11, pp. 531-546. [10.4049/immunohorizons.1900087] https://www.ncbi.nlm.nih.gov/pubmed/31732662Test; Muharam R., Bustami A., Gusti Mansur I., Zulkifli Jacoeb T., Giustiniani J., Schiavon V.,Bensussan A. Cytotoxic activity of peripheral blood mononuclear cells in patients with endometriosis: A cross-sectional study. Int J Reprod Biomed, 2022, Vol.20, no 8, pp. 691-700. [10.18502/ijrm.v20i8.11758] https://www.ncbi.nlm.nih.gov/pubmed/36313261Test; Murakami D., Matsuda K., Iwamoto H., Mitani Y., Mizumoto Y., Nakamura Y., Matsuzaki I., Iwamoto R., Takahashi Y., Kojima F., Murata S.I.,Yamaue H. Prognostic value of CD155/TIGIT expression in patients with colorectal cancer. PLoS One, 2022, Vol.17, no 3, pp. e0265908. [10.1371/journal.pone.0265908] https://www.ncbi.nlm.nih.gov/pubmed/35324958Test; Mutti L., Valle M.T., Balbi B., Orengo A.M., Lazzaro A., Alciato P., Gatti E., Betta P.G.,Pozzi E. Primary human mesothelioma cells express class II MHC, ICAM-1 and B7-2 and can present recall antigens to autologous blood lymphocytes. Int J Cancer, 1998, Vol.78, no 6, pp. 740-9. [10.1002/(sici)1097-0215(19981209)78:63.0.co;2-5] https://www.ncbi.nlm.nih.gov/pubmed/9833768Test; Naseri S., Rosenberg-Hasson Y., Maecker H.T., Avrutsky M.I.,Blumenthal P.D. A cross-sectional study comparing the inflammatory profile of menstrual effluent vs. peripheral blood. Health Sci Rep, 2023, Vol.6, no 1, pp. e1038. [10.1002/hsr2.1038] https://www.ncbi.nlm.nih.gov/pubmed/36620506Test; Nasr S., Haddad F.G., Khazen J., Kattan J.,Trak-Smayra V. PD-L1 protein expression by Combined Positive Score (CPS) in patients with muscle invasive or advanced urothelial carcinoma: a single institution experience. BMC Cancer, 2023, Vol.23, no 1, pp. 817. [10.1186/s12885-023-11299-y] https://www.ncbi.nlm.nih.gov/pubmed/37658290Test; Neumann M., Murphy N.,Seetharamu N. The Evolving Role of PD-L1 Inhibition in Non-Small Cell Lung Cancer: A Review of Durvalumab and Avelumab. Cancer Med J, 2022, Vol.5, no 1, pp. 31-45. https://www.ncbi.nlm.nih.gov/pubmed/35253011Test; Nomi T., Sho M., Akahori T., Hamada K., Kubo A., Kanehiro H., Nakamura S., Enomoto K., Yagita H., Azuma M.,Nakajima Y. Clinical significance and therapeutic potential of the programmed death-1 ligand/programmed death-1 pathway in human pancreatic cancer. Clin Cancer Res, 2007, Vol.13, no 7, pp. 2151-7. [10.1158/1078-0432.CCR-06-2746] https://www.ncbi.nlm.nih.gov/pubmed/17404099Test; Oksasoglu B., Hepokur C., Misir S., Yildiz C., Sonmez G.,Yanik A. Determination of PD-1 expression in peripheral blood cells in patients with endometriosis. Gynecol Endocrinol, 2021, Vol.37, no 2, pp. 157-161. [10.1080/09513590.2020.1821358] https://www.ncbi.nlm.nih.gov/pubmed/33078970Test; Olkowska-Truchanowicz J., Bialoszewska A., Zwierzchowska A., Sztokfisz-Ignasiak A., Janiuk I., Dabrowski F., Korczak-Kowalska G., Barcz E., Bocian K.,Malejczyk J. Peritoneal Fluid from Patients with Ovarian Endometriosis Displays Immunosuppressive Potential and Stimulates Th2 Response. Int J Mol Sci, 2021, Vol.22, no 15. [10.3390/ijms22158134] https://www.ncbi.nlm.nih.gov/pubmed/34360900Test; Ortiz C.N., Torres-Reveron A.,Appleyard C.B. Metabolomics in endometriosis: challenges and perspectives for future studies. Reprod Fertil, 2021, Vol.2, no 2, pp. R35-R50. [10.1530/RAF-20-0047] https://www.ncbi.nlm.nih.gov/pubmed/35128453Test; https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8812441/pdf/RAF-20-0047.pdfTest; Othman Eel D., Hornung D., Salem H.T., Khalifa E.A., El-Metwally T.H.,Al-Hendy A. Serum cytokines as biomarkers for nonsurgical prediction of endometriosis. Eur J Obstet Gynecol Reprod Biol, 2008, Vol.137, no 2, pp. 240-6. [10.1016/j.ejogrb.2007.05.001] https://www.ncbi.nlm.nih.gov/pubmed/17582674Test; Othman E.R., Hornung D., Hussein M., Abdelaal, II, Sayed A.A., Fetih A.N.,Al-Hendy A. Soluble tumor necrosis factor-alpha receptors in the serum of endometriosis patients. Eur J Obstet Gynecol Reprod Biol, 2016, Vol.200, no, pp. 1-5. [10.1016/j.ejogrb.2016.02.025] https://www.ncbi.nlm.nih.gov/pubmed/26963895Test; Oyama R., Kanayama M., Mori M., Matsumiya H., Taira A., Shinohara S., Takenaka M., Yoneda K., Kuroda K.,Tanaka F. CD155 expression and its clinical significance in non-small cell lung cancer. Oncol Lett, 2022, Vol.23, no 5, pp. 166. [10.3892/ol.2022.13286] https://www.ncbi.nlm.nih.gov/pubmed/35414831Test; Pan H.Y.,Wan J. Serum HSF1 is upregulated in endometriosis patients and serves as a potential diagnostic biomarker. Kaohsiung J Med Sci, 2023, Vol.39, no 10, pp. 1045-1051. [10.1002/kjm2.12723] https://www.ncbi.nlm.nih.gov/pubmed/37409787Test; Popovici R.M., Krause M.S., Germeyer A., Strowitzki T.,von Wolff M. Galectin-9: a new endometrial epithelial marker for the mid- and late-secretory and decidual phases in humans. J Clin Endocrinol Metab, 2005, Vol.90, no 11, pp. 6170-6. [10.1210/jc.2004-2529] https://www.ncbi.nlm.nih.gov/pubmed/16105962Test; Qi H., Li Y., Liu X., Jiang Y., Li Z., Xu X., Zhang H.,Hu X. Tim-3 regulates the immunosuppressive function of decidual MDSCs via the Fyn-STAT3-C/EBPbeta pathway during Toxoplasma gondii infection. PLoS Pathog, 2023, Vol.19, no 4, pp. e1011329. [10.1371/journal.ppat.1011329] https://www.ncbi.nlm.nih.gov/pubmed/37058540Test; Raschi E., Comito F., Massari F.,Gelsomino F. Relatlimab and nivolumab in untreated advanced melanoma: insight into RELATIVITY. Immunotherapy, 2023, Vol.15, no 2, pp. 85-91. [10.2217/imt-2022-0172] https://www.ncbi.nlm.nih.gov/pubmed/36628573Test; Rondon L., Fu R.,Patel M.R. Success of Checkpoint Blockade Paves the Way for Novel Immune Therapy in Malignant Pleural Mesothelioma. Cancers (Basel), 2023, Vol.15, no 11. [10.3390/cancers15112940] https://www.ncbi.nlm.nih.gov/pubmed/37296902Test; Rotte A. Combination of CTLA-4 and PD-1 blockers for treatment of cancer. J Exp Clin Cancer Res, 2019, Vol.38, no 1, pp. 255. [10.1186/s13046-019-1259-z] https://www.ncbi.nlm.nih.gov/pubmed/31196207Test; Sansone A.M., Hisrich B.V., Young R.B., Abel W.F., Bowens Z., Blair B.B., Funkhouser A.T., Schammel D.P., Green L.J., Lessey B.A.,Blenda A.V. Evaluation of BCL6 and SIRT1 as Non-Invasive Diagnostic Markers of Endometriosis. Curr Issues Mol Biol, 2021, Vol.43, no 3, pp. 1350-1360. [10.3390/cimb43030096] https://www.ncbi.nlm.nih.gov/pubmed/34698105Test; Santoso B., Sa'adi A., Dwiningsih S.R., Tunjungseto A., Widyanugraha M.Y.A., Mufid A.F., Rahmawati N.Y.,Ahsan F. Soluble immune checkpoints CTLA-4, HLA-G, PD-1, and PD-L1 are associated with endometriosis-related infertility. Am J Reprod Immunol, 2020, Vol.84, no 4, pp. e13296. [10.1111/aji.13296] https://www.ncbi.nlm.nih.gov/pubmed/32593225Test; Shafrir A.L., Farland L.V., Shah D.K., Harris H.R., Kvaskoff M., Zondervan K.,Missmer S.A. Risk for and consequences of endometriosis: A critical epidemiologic review. Best Pract Res Clin Obstet Gynaecol, 2018, Vol.51, no, pp. 1-15. [10.1016/j.bpobgyn.2018.06.001] https://www.ncbi.nlm.nih.gov/pubmed/30017581Test; Shah M., Osgood C.L., Amatya A.K., Fiero M.H., Pierce W.F., Nair A., Herz J., Robertson K.J., Mixter B.D., Tang S., Pazdur R., Beaver J.A.,Amiri-Kordestani L. FDA Approval Summary: Pembrolizumab for Neoadjuvant and Adjuvant Treatment of Patients with High-Risk Early-Stage Triple-Negative Breast Cancer. Clin Cancer Res, 2022, Vol.28, no 24, pp. 5249-5253. [10.1158/1078-0432.CCR-22-1110] https://www.ncbi.nlm.nih.gov/pubmed/35925043Test; Shigesi N., Kvaskoff M., Kirtley S., Feng Q., Fang H., Knight J.C., Missmer S.A., Rahmioglu N., Zondervan K.T.,Becker C.M. The association between endometriosis and autoimmune diseases: a systematic review and meta-analysis. Hum Reprod Update, 2019, Vol.25, no 4, pp. 486-503. [10.1093/humupd/dmz014] https://www.ncbi.nlm.nih.gov/pubmed/31260048Test; Simone R., Pesce G., Antola P., Rumbullaku M., Bagnasco M., Bizzaro N.,Saverino D. The soluble form of CTLA-4 from serum of patients with autoimmune diseases regulates T-cell responses. Biomed Res Int, 2014, Vol.2014, no, pp. 215763. [10.1155/2014/215763] https://www.ncbi.nlm.nih.gov/pubmed/24605322Test; Souza D.S., Macheroni C., Pereira G.J.S., Vicente C.M.,Porto C.S. Molecular regulation of prostate cancer by Galectin-3 and estrogen receptor. Front Endocrinol (Lausanne), 2023, Vol.14, no, pp. 1124111. [10.3389/fendo.2023.1124111] https://www.ncbi.nlm.nih.gov/pubmed/36936148Test; Stanietsky N., Simic H., Arapovic J., Toporik A., Levy O., Novik A., Levine Z., Beiman M., Dassa L., Achdout H., Stern-Ginossar N., Tsukerman P., Jonjic S.,Mandelboim O. The interaction of TIGIT with PVR and PVRL2 inhibits human NK cell cytotoxicity. Proc Natl Acad Sci U S A, 2009, Vol.106, no 42, pp. 17858-63. [10.1073/pnas.0903474106] https://www.ncbi.nlm.nih.gov/pubmed/19815499Test; Stasenko M., Smith E., Yeku O., Park K.J., Laster I., Lee K., Walderich S., Spriggs E., Rueda B., Weigelt B., Zamarin D., Rao T.D.,Spriggs D.R. Targeting galectin-3 with a high-affinity antibody for inhibition of high-grade serous ovarian cancer and other MUC16/CA-125-expressing malignancies. Sci Rep, 2021, Vol.11, no 1, pp. 3718. [10.1038/s41598-021-82686-3] https://www.ncbi.nlm.nih.gov/pubmed/33580170Test; Suszczyk D., Skiba W., Zardzewialy W., Pawlowska A., Wlodarczyk K., Polak G., Tarkowski R.,Wertel I. Clinical Value of the PD-1/PD-L1/PD-L2 Pathway in Patients Suffering from Endometriosis. Int J Mol Sci, 2022, Vol.23, no 19. [10.3390/ijms231911607] https://www.ncbi.nlm.nih.gov/pubmed/36232911Test; https://mdpi-res.com/d_attachment/ijms/ijms-23-11607/article_deploy/ijms-23-11607-v2.pdf?version=1665309498Test; Suzman D.L., Agrawal S., Ning Y.M., Maher V.E., Fernandes L.L., Karuri S., Tang S., Sridhara R., Schroeder J., Goldberg K.B., Ibrahim A., McKee A.E., Pazdur R.,Beaver J.A. FDA Approval Summary: Atezolizumab or Pembrolizumab for the Treatment of Patients with Advanced Urothelial Carcinoma Ineligible for Cisplatin-Containing Chemotherapy. Oncologist, 2019, Vol.24, no 4, pp. 563-569. [10.1634/theoncologist.2018-0084] https://www.ncbi.nlm.nih.gov/pubmed/30541754Test; Sznol M. Blockade of the B7-H1/PD-1 pathway as a basis for combination anticancer therapy. Cancer J, 2014, Vol.20, no 4, pp. 290-5. [10.1097/PPO.0000000000000056] https://www.ncbi.nlm.nih.gov/pubmed/25098290Test; Tahermanesh K., Hakimpour S., Govahi A., Rokhgireh S., Mehdizadeh M., Minaeian S., Barati M., Chaichian S., Kashi A.M., Nassiri S., Eslahi N., Ajdary M.,Ahmadi M. Evaluation of expression of biomarkers of PLAGL1 (ZAC1), microRNA, and their non-coding RNAs in patients with endometriosis. J Gynecol Obstet Hum Reprod, 2023, Vol.52, no 4, pp. 102568. [10.1016/j.jogoh.2023.102568] https://www.ncbi.nlm.nih.gov/pubmed/36868502Test; Tanaka E., Sendo F., Kawagoe S.,Hiroi M. Decreased natural killer cell activity in women with endometriosis. Gynecol Obstet Invest, 1992, Vol.34, no 1, pp. 27-30. [10.1159/000292720] https://www.ncbi.nlm.nih.gov/pubmed/1526528Test; Tang T., Lai H., Huang X., Gu L.,Shi H. Application of serum markers in diagnosis and staging of ovarian endometriosis. J Obstet Gynaecol Res, 2021, Vol.47, no 4, pp. 1441-1450. [10.1111/jog.14654] https://www.ncbi.nlm.nih.gov/pubmed/33448139Test; Tella S.H., Kommalapati A., Mahipal A.,Jin Z. First-Line Targeted Therapy for Hepatocellular Carcinoma: Role of Atezolizumab/Bevacizumab Combination. Biomedicines, 2022, Vol.10, no 6. [10.3390/biomedicines10061304] https://www.ncbi.nlm.nih.gov/pubmed/35740326Test; Timmerman J., Herbaux C., Ribrag V., Zelenetz A.D., Houot R., Neelapu S.S., Logan T., Lossos I.S., Urba W., Salles G., Ramchandren R., Jacobson C., Godwin J., Carpio C., Lathers D., Liu Y., Neely J., Suryawanshi S., Koguchi Y.,Levy R. Urelumab alone or in combination with rituximab in patients with relapsed or refractory B-cell lymphoma. Am J Hematol, 2020, Vol.95, no 5, pp. 510-520. [10.1002/ajh.25757] https://www.ncbi.nlm.nih.gov/pubmed/32052473Test; Vellanki P.J., Mulkey F., Jaigirdar A.A., Rodriguez L., Wang Y., Xu Y., Zhao H., Liu J., Howe G., Wang J., Choo Q., Golding S.J., Mansell V., Korsah K., Spillman D., de Claro R.A., Pazdur R., Beaver J.A.,Singh H. FDA Approval Summary: Nivolumab with Ipilimumab and Chemotherapy for Metastatic Non-small Cell Lung Cancer, A Collaborative Project Orbis Review. Clin Cancer Res, 2021, Vol.27, no 13, pp. 3522-3527. [10.1158/1078-0432.CCR-20-4338] https://www.ncbi.nlm.nih.gov/pubmed/33632925Test; Vence L., Bucktrout S.L., Fernandez Curbelo I., Blando J., Smith B.M., Mahne A.E., Lin J.C., Park T., Pascua E., Sai T., Chaparro-Riggers J., Subudhi S.K., Scutti J.B., Higa M.G., Zhao H., Yadav S.S., Maitra A., Wistuba, II, Allison J.P.,Sharma P. Characterization and Comparison of GITR Expression in Solid Tumors. Clin Cancer Res, 2019, Vol.25, no 21, pp. 6501-6510. [10.1158/1078-0432.CCR-19-0289] https://www.ncbi.nlm.nih.gov/pubmed/31358539Test; Villanacci R., Bandini V., Ottolina J., Pagliardini L., Candiani M.,Vigano P. The pathogenesis of endometriosis: clues from the immunological evidence. Minerva Obstet Gynecol, 2021, Vol.73, no 3, pp. 275-282. [10.23736/S2724-606X.21.04768-7] https://www.ncbi.nlm.nih.gov/pubmed/34008382Test; Vinay D.S.,Kwon B.S. 4-1BB signaling beyond T cells. Cell Mol Immunol, 2011, Vol.8, no 4, pp. 281-4. [10.1038/cmi.2010.82] http://www.ncbi.nlm.nih.gov/pubmed/21217771Test; http://www.nature.com/cmi/journal/v8/n4/pdf/cmi201082a.pdfTest; von Euw E., Chodon T., Attar N., Jalil J., Koya R.C., Comin-Anduix B.,Ribas A. CTLA4 blockade increases Th17 cells in patients with metastatic melanoma. J Transl Med, 2009, Vol.7, no, pp. 35. [10.1186/1479-5876-7-35] https://www.ncbi.nlm.nih.gov/pubmed/19457253Test; Walankiewicz M., Grywalska E., Polak G., Korona-Glowniak I., Witt E., Surdacka A., Kotarski J.,Rolinski J. The Increase of Circulating PD-1- and PD-L1-Expressing Lymphocytes in Endometriosis: Correlation with Clinical and Laboratory Parameters. Mediators Inflamm, 2018, Vol.2018, no, pp. 7041342. [10.1155/2018/7041342] https://www.ncbi.nlm.nih.gov/pubmed/30595667Test; Wang X.B., Fan Z.Z., Anton D., Vollenhoven A.V., Ni Z.H., Chen X.F.,Lefvert A.K. CTLA4 is expressed on mature dendritic cells derived from human monocytes and influences their maturation and antigen presentation. BMC Immunol, 2011, Vol.12, no, pp. 21. [10.1186/1471-2172-12-21] https://www.ncbi.nlm.nih.gov/pubmed/21414236Test; Wang Y., Du J., Gao Z., Sun H., Mei M., Wang Y., Ren Y.,Zhou X. Evolving landscape of PD-L2: bring new light to checkpoint immunotherapy. Br J Cancer, 2023, Vol.128, no 7, pp. 1196-1207. [10.1038/s41416-022-02084-y] https://www.ncbi.nlm.nih.gov/pubmed/36522474Test; Wang Y., Feng T., Li H., Xiong Y.,Tao Y. Gal-9/Tim-3 signaling pathway activation suppresses the generation of Th17 cells and promotes the induction of Foxp3(+) regulatory T cells in renal ischemia-reperfusion injury. Mol Immunol, 2023, Vol.156, no, pp. 136-147. [10.1016/j.molimm.2023.03.008] https://www.ncbi.nlm.nih.gov/pubmed/36921488Test; Warzecha D., Zalecka J., Manka G., Kiecka M., Lipa M., Spaczynski R., Piekarski P., Banaszewska B., Jakimiuk A., Issat T., Rokita W., Mlodawski J., Szubert M., Sieroszewski P., Raba G., Szczupak K., Kluz T., Kluza M., Wielgos M., Oldak L., Lesniewska A., Gorodkiewicz E.,Laudanski P. Plasma and Peritoneal Fluid Fibronectin and Collagen IV Levels as Potential Biomarkers of Endometriosis. Int J Mol Sci, 2022, Vol.23, no 24. [10.3390/ijms232415669] https://www.ncbi.nlm.nih.gov/pubmed/36555313Test; Wessels J.M., Kay V.R., Leyland N.A., Agarwal S.K.,Foster W.G. Assessing brain-derived neurotrophic factor as a novel clinical marker of endometriosis. Fertil Steril, 2016, Vol.105, no 1, pp. 119-28 e1-5. [10.1016/j.fertnstert.2015.09.003] https://www.ncbi.nlm.nih.gov/pubmed/26409150Test; Wiles K.N., Tsikretsis L.E., Alioto C.M., Hermida de Viveiros P.A., Villaflor V.M.,Tetreault M.P. GITR agonistic stimulation enhances the anti-tumor immune response in a mouse model of ESCC. Carcinogenesis, 2022, Vol.43, no 9, pp. 908-918. [10.1093/carcin/bgac064] https://www.ncbi.nlm.nih.gov/pubmed/35880612Test; Wing K., Onishi Y., Prieto-Martin P., Yamaguchi T., Miyara M., Fehervari Z., Nomura T.,Sakaguchi S. CTLA-4 control over Foxp3+ regulatory T cell function. Science, 2008, Vol.322, no 5899, pp. 271-5. [10.1126/science.1160062] http://www.ncbi.nlm.nih.gov/pubmed/18845758Test; Wroblewski J.M., Bixby D.L., Borowski C.,Yannelli J.R. Characterization of human non-small cell lung cancer (NSCLC) cell lines for expression of MHC, co-stimulatory molecules and tumor-associated antigens. Lung Cancer, 2001, Vol.33, no 2-3, pp. 181-94. [10.1016/s0169-5002(01)00210-0] https://www.ncbi.nlm.nih.gov/pubmed/11551413Test; Wu L., Lv C., Su Y., Li C., Zhang H., Zhao X.,Li M. Expression of programmed death-1 (PD-1) and its ligand PD-L1 is upregulated in endometriosis and promoted by 17beta-estradiol. Gynecol Endocrinol, 2019, Vol.35, no 3, pp. 251-256. [10.1080/09513590.2018.1519787] https://www.ncbi.nlm.nih.gov/pubmed/30325236Test; Xu F., Liu J., Liu D., Liu B., Wang M., Hu Z., Du X., Tang L.,He F. LSECtin expressed on melanoma cells promotes tumor progression by inhibiting antitumor T-cell responses. Cancer Res, 2014, Vol.74, no 13, pp. 3418-28. [10.1158/0008-5472.CAN-13-2690] https://www.ncbi.nlm.nih.gov/pubmed/24769443Test; Xu J.X., Maher V.E., Zhang L., Tang S., Sridhara R., Ibrahim A., Kim G.,Pazdur R. FDA Approval Summary: Nivolumab in Advanced Renal Cell Carcinoma After Anti-Angiogenic Therapy and Exploratory Predictive Biomarker Analysis. Oncologist, 2017, Vol.22, no 3, pp. 311-317. [10.1634/theoncologist.2016-0476] https://www.ncbi.nlm.nih.gov/pubmed/28232599Test; Xue C., Zhu D., Chen L., Xu Y., Xu B., Zhang D.,Jiang J. Expression and prognostic value of PD-L1 and PD-L2 in ovarian cancer. Transl Cancer Res, 2019, Vol.8, no 1, pp. 111-119. [10.21037/tcr.2019.01.09] https://www.ncbi.nlm.nih.gov/pubmed/35116740Test; Yamashita S., Hashimoto K., Sawada I., Ogawa M., Nakatsuka E., Kawano M., Kinose Y., Kodama M., Sawada K.,Kimura T. Endometrial galectin-3 causes endometriosis by supporting eutopic endometrial cell survival and engraftment in the peritoneal cavity. Am J Reprod Immunol, 2022, Vol.87, no 6, pp. e13533. [10.1111/aji.13533] https://www.ncbi.nlm.nih.gov/pubmed/35366371Test; Yan J., Zhang Y., Zhang J.P., Liang J., Li L.,Zheng L. Tim-3 expression defines regulatory T cells in human tumors. PLoS One, 2013, Vol.8, no 3, pp. e58006. [10.1371/journal.pone.0058006] https://www.ncbi.nlm.nih.gov/pubmed/23526963Test; Yang M., Yu Q., Liu J., Fu W., Cao Y., Yu L., Shao S., Wang X., Niu H.,Wang Y. T-cell immunoglobulin mucin-3 expression in bladder urothelial carcinoma: Clinicopathologic correlations and association with survival. J Surg Oncol, 2015, Vol.112, no 4, pp. 430-5. [10.1002/jso.24012] https://www.ncbi.nlm.nih.gov/pubmed/26265374Test; Yasinska I.M., Sakhnevych S.S., Pavlova L., Teo Hansen Selno A., Teuscher Abeleira A.M., Benlaouer O., Goncalves Silva I., Mosimann M., Varani L., Bardelli M., Hussain R., Siligardi G., Cholewa D., Berger S.M., Gibbs B.F., Ushkaryov Y.A., Fasler-Kan E., Klenova E.,Sumbayev V.V. The Tim-3-Galectin-9 Pathway and Its Regulatory Mechanisms in Human Breast Cancer. Front Immunol, 2019, Vol.10, no, pp. 1594. [10.3389/fimmu.2019.01594] https://www.ncbi.nlm.nih.gov/pubmed/31354733Test; Yildiz C., Caner A., Oksasoglu B., Misir S., Yaylim I.,Hepokur C. The role of cytokeratin 19 levels in the determination of endometriosis stages. Gynecol Endocrinol, 2022, Vol.38, no 10, pp. 879-884. [10.1080/09513590.2022.2120606] https://www.ncbi.nlm.nih.gov/pubmed/36068968Test; Zhang C., Xu L., Ma Y., Huang Y., Zhou L., Le H.,Chen Z. Increased TIM-3 expression in tumor-associated macrophages predicts a poorer prognosis in non-small cell lung cancer: a retrospective cohort study. J Thorac Dis, 2023, Vol.15, no 3, pp. 1433-1444. [10.21037/jtd-23-227] https://www.ncbi.nlm.nih.gov/pubmed/37065598Test; Zhang Y., Wu L., Wen X.,Lv X. Identification and validation of risk score model based on gene set activity as a diagnostic biomarker for endometriosis. Heliyon, 2023, Vol.9, no 7, pp. e18277. [10.1016/j.heliyon.2023.e18277] https://www.ncbi.nlm.nih.gov/pubmed/37539146Test; Zhang Y., Yang R., Xu C., Zhang Y., Deng M., Wu D., Tang F., Liu X., Han Y., Zhan Y.,Miao J. Analysis of the immune checkpoint lymphocyte activation gene-3 (LAG-3) in endometrial cancer: An emerging target for immunotherapy. Pathol Res Pract, 2022, Vol.236, no, pp. 153990. [10.1016/j.prp.2022.153990] https://www.ncbi.nlm.nih.gov/pubmed/35749914Test; Zhang Y., Yao Q., Pan Y., Fang X., Xu H., Zhao T., Zhu G., Jiang T., Li S.,Cao H. Efficacy and Safety of PD-1/PD-L1 Checkpoint Inhibitors versus Anti-PD-1/PD-L1 Combined with Other Therapies for Tumors: A Systematic Review. Cancers (Basel), 2023, Vol.15, no 3. [10.3390/cancers15030682] https://www.ncbi.nlm.nih.gov/pubmed/36765640Test; Zhang Y., Zhang H., Wei M., Mou T., Shi T., Ma Y., Cai X., Li Y., Dong J.,Wei J. Recombinant Adenovirus Expressing a Soluble Fusion Protein PD-1/CD137L Subverts the Suppression of CD8(+) T Cells in HCC. Mol Ther, 2019, Vol.27, no 11, pp. 1906-1918. [10.1016/j.ymthe.2019.07.019] https://www.ncbi.nlm.nih.gov/pubmed/31466933Test; Zhang Y.,Zheng J. Functions of Immune Checkpoint Molecules Beyond Immune Evasion. Adv Exp Med Biol, 2020, Vol.1248, no, pp. 201-226. [10.1007/978-981-15-3266-5_9] https://www.ncbi.nlm.nih.gov/pubmed/32185712Test; Zheng D., Hou X., Yu J.,He X. Combinatorial Strategies With PD-1/PD-L1 Immune Checkpoint Blockade for Breast Cancer Therapy: Mechanisms and Clinical Outcomes. Front Pharmacol, 2022, Vol.13, no, pp. 928369. [10.3389/fphar.2022.928369] https://www.ncbi.nlm.nih.gov/pubmed/35935874Test; Zheng L., Sun D.F.,Tong Y. Exosomal miR-202 derived from leukorrhea as a potential biomarker for endometriosis. J Int Med Res, 2023, Vol.51, no 1, pp. 3000605221147183. [10.1177/03000605221147183] https://www.ncbi.nlm.nih.gov/pubmed/36597409Test; Zhou E., Huang Q., Wang J., Fang C., Yang L., Zhu M., Chen J., Chen L.,Dong M. Up-regulation of Tim-3 is associated with poor prognosis of patients with colon cancer. Int J Clin Exp Pathol, 2015, Vol.8, no 7, pp. 8018-27. https://www.ncbi.nlm.nih.gov/pubmed/26339368Test; Zhu C., Anderson A.C., Schubart A., Xiong H., Imitola J., Khoury S.J., Zheng X.X., Strom T.B.,Kuchroo V.K. The Tim-3 ligand galectin-9 negatively regulates T helper type 1 immunity. Nat Immunol, 2005, Vol.6, no 12, pp. 1245-52. [10.1038/ni1271] https://www.ncbi.nlm.nih.gov/pubmed/16286920Test; Zhu H., Wang M., Du Y., Liu X., Weng X.,Li C. 4-1BBL has a Possible Role in Mediating Castration-Resistant Conversion of Prostate Cancer via Up-Regulation of Androgen Receptor. J Cancer, 2019, Vol.10, no 11, pp. 2464-2471. [10.7150/jca.29648] https://www.ncbi.nlm.nih.gov/pubmed/31258752Test; Ziogas I.A., Evangeliou A.P., Giannis D., Hayat M.H., Mylonas K.S., Tohme S., Geller D.A., Elias N., Goyal L.,Tsoulfas G. The Role of Immunotherapy in Hepatocellular Carcinoma: A Systematic Review and Pooled Analysis of 2,402 Patients. Oncologist, 2021, Vol.26, no 6, pp. e1036-e1049. [10.1002/onco.13638] https://www.ncbi.nlm.nih.gov/pubmed/33314549Test; https://www.mimmun.ru/mimmun/article/view/2923Test

  8. 18
    دورية أكاديمية

    المصدر: Biomolecules and Biomedicine; Advanced online ; 2831-090X ; 2831-0896

    الوصف: The application of immune checkpoint inhibitors has proven to be an effective treatment for cancer. Immune checkpoints such as programmed cell death protein 1/programmed cell death protein 1 ligand 1 (PD-1/PD-L1), cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), T-cell immunoglobulin-3 (TIM-3), T-cell immunoglobulin and ITIM domain (TIGIT), and lymphocyte activation gene-3 (LAG-3) have received extensive attention, and the efficacy of antibodies or inhibitors against these checkpoints (either alone or in combination) has been evaluated in many tumors. This paper provides a brief overview of the PD-1 and LAG-3 checkpoints, and then shifts focus to the combined use of PD-1 and LAG-3 antibodies in both in vivo and in vitro experiments. In the in vitro experiments, we examined the correlation between the expression and activation of these inhibitors on T cells, and also assessed toxicity in animals in preparation for in vivo experiments. The effects of the combined use of PD-1 and LAG-3 antibodies were then summarized in animal models of melanoma, MC38 carcinoma, and other tumors. In clinical studies, the combined application of these antibodies was assessed in patients with melanoma, colorectal, breast, and renal cell cancers, as well as other solid tumors. In general, the combination of PD-1 and LAG-3 antibodies has shown promising results in both in vivo and in vitro studies.

    وصف الملف: application/pdf

  9. 19
    دورية أكاديمية

    المصدر: Frontiers in Immunology, Vol 14 (2023)

    الوصف: CD4 and LAG-3 are related molecules that are receptors for MHC class II molecules. Their major functional differences are situated in their cytoplasmic tails, in which CD4 has an activation motif and LAG-3 an inhibitory motif. Here, we identify shark LAG-3 and show that a previously identified shark CD4-like gene has a genomic location, expression pattern, and motifs similar to CD4 in other vertebrates. In nurse shark (Ginglymostoma cirratum) and cloudy catshark (Scyliorhinus torazame), the highest CD4 expression was consistently found in the thymus whereas such was not the case for LAG-3. Throughout jawed vertebrates, the CD4 cytoplasmic tail possesses a Cx(C/H) motif for binding kinase LCK, and the LAG-3 cytoplasmic tail possesses (F/Y)xxL(D/E) including the previously determined FxxL inhibitory motif resembling an immunoreceptor tyrosine-based inhibition motif (ITIM). On the other hand, the acidic end of the mammalian LAG-3 cytoplasmic tail, which is believed to have an inhibitory function as well, was acquired later in evolution. The present study also identified CD4-1, CD4-2, and LAG-3 in the primitive ray-finned fishes bichirs, sturgeons, and gars, and experimentally determined these sequences for sterlet sturgeon (Acipenser ruthenus). Therefore, with CD4-1 and CD4-2 already known in teleosts (modern ray-finned fish), these two CD4 lineages have now been found within all major clades of ray-finned fish. Although different from each other, the cytoplasmic tails of ray-finned fish CD4-1 and chondrichthyan CD4 not only contain the Cx(C/H) motif but also an additional highly conserved motif which we expect to confer a function. Thus, although restricted to some species and gene copies, in evolution both CD4 and LAG-3 molecules appear to have acquired functional motifs besides their canonical Cx(C/H) and ITIM-like motifs, respectively. The presence of CD4 and LAG-3 molecules with seemingly opposing functions from the level of sharks, the oldest living vertebrates with a human-like adaptive immune system, underlines their importance for the jawed vertebrate immune system. It also emphasizes the general need of the immune system to always find a balance, leading to trade-offs, between activating and inhibiting processes.

    وصف الملف: electronic resource

  10. 20
    دورية أكاديمية

    المصدر: OncoImmunology, Vol 12, Iss 1 (2023)

    الوصف: ABSTRACTLymphocyte-activation gene-3 (LAG-3), an immune checkpoint receptor, negatively regulates T-cell function and facilitates immune escape of tumors. Dual inhibition of LAG-3 and programmed cell death receptor-1 (PD-1) significantly improved progression-free survival (PFS) in metastatic melanoma patients compared to anti-PD-1 therapy alone. Investigating the utility of LAG-3 expression as a biomarker of response to anti-LAG-3 + anti-PD-1 immunotherapy is of great clinical relevance. This study sought to evaluate the association between baseline LAG-3 expression and clinical outcomes following anti-LAG-3 and anti-PD-1-based immunotherapy in metastatic melanoma. LAG-3 immunohistochemistry (clone D2G4O) was performed on pre-treatment formalin-fixed, paraffin-embedded metastatic melanoma specimens from 53 patients treated with combination anti-LAG-3 + anti-PD-1-based therapies. Eleven patients had received prior anti-PD-1-based treatment. Patients were categorized as responders (complete/partial response; n = 36) or non-responders (stable/progressive disease; n = 17) based on the Response Evaluation Criteria in Solid Tumours (RECIST). Tumor-infiltrating lymphocytes (TILs) were scored on hematoxylin and eosin-stained sections. LAG-3 expression was observed in 81% of patients, with staining in TILs and dendritic cells. Responders displayed significantly higher proportions of LAG-3+ cells compared to non-responders (P = .0210). LAG-3 expression positively correlated with TIL score (P .05). Patients with ≥ 1% LAG-3+ cells in their tumors had significantly longer PFS compared to patients with

    وصف الملف: electronic resource