يعرض 1 - 10 نتائج من 135 نتيجة بحث عن '"Kanitha Patarakul"', وقت الاستعلام: 2.38s تنقيح النتائج
  1. 1
    دورية أكاديمية

    المصدر: Scientific Reports, Vol 14, Iss 1, Pp 1-10 (2024)

    مصطلحات موضوعية: Medicine, Science

    الوصف: Abstract ChulaCov19 mRNA vaccine demonstrated promising phase 1 results. Healthy adults aged 18–59 years were double-blind randomised 4:1 to receive two intramuscular doses of ChulaCov19 50 µg or placebo. Primary endpoints were safety and microneutralization antibody against-wild-type (Micro-VNT50) at day 50. One hundred fifty adults with median (IQR) age 37 (30–46) years were randomised. ChulaCov19 was well tolerated, and most adverse events were mild to moderate and temporary. Geometric mean titres (GMT) of neutralizing titre against wild-type for ChulaCov19 on day 50 were 1367 IU/mL. T-cell IFN-γ-ELISpot showed the highest responses at one week (Day29) after dose 2 then gradually declined. ChulaCov19 50 µg is well tolerated and elicited high neutralizing antibodies and strong T-cell responses in healthy adults. Trial registration number: ClinicalTrials.gov Identifier NCT04566276, 28/09/2020.

    وصف الملف: electronic resource

  2. 2
    دورية أكاديمية

    المصدر: Scientific Reports, Vol 13, Iss 1, Pp 1-12 (2023)

    مصطلحات موضوعية: Medicine, Science

    الوصف: Abstract Bacterial extracellular vesicles (EVs) are generally formed by pinching off outer membrane leaflets while simultaneously releasing multiple active molecules into the external environment. In this study, we aimed to identify the protein cargo of leptospiral EVs released from intact leptospires grown under three different conditions: EMJH medium at 30 °C, temperature shifted to 37 °C, and physiologic osmolarity (EMJH medium with 120 mM NaCl). The naturally released EVs observed under transmission electron microscopy were spherical in shape with an approximate diameter of 80–100 nm. Quantitative proteomics and bioinformatic analysis indicated that the EVs were formed primarily from the outer membrane and the cytoplasm. The main functional COG categories of proteins carried in leptospiral EVs might be involved in cell growth, survival and adaptation, and pathogenicity. Relative to their abundance in EVs grown in EMJH medium at 30 °C, 39 and 69 proteins exhibited significant changes in response to the temperature shift and the osmotic change, respectively. During exposure to both stresses, Leptospira secreted several multifunctional proteins via EVs, while preserving certain virulence proteins within whole cells. Therefore, leptospiral EVs may serve as a decoy structure for host responses, whereas some virulence factors necessary for direct interaction with the host environment are reserved in leptospiral cells. This knowledge will be useful for understanding the pathogenesis of leptospirosis and developing as one of vaccine platforms against leptospirosis in the future.

    وصف الملف: electronic resource

  3. 3
    دورية أكاديمية

    المصدر: PLoS Neglected Tropical Diseases, Vol 17, Iss 11, p e0011781 (2023)

    الوصف: Leptospirosis is a global zoonosis caused by pathogenic Leptospira. The disease outcome is influenced by the interplay between innate and adaptive immune responses. Dendritic cells (DCs) play a crucial role in shaping the adaptive immune response. A recent study revealed that pathogenic Leptospira limited the activation of human monocyte-derived dendritic cells (MoDCs) compared to non-pathogenic Leptospira, but their impact on T-cell responses has not been investigated. Our study is the first to explore how viable pathogenic and non-pathogenic Leptospira affect the interaction between human MoDCs and T cells. We found that MoDCs infected with pathogenic leptospires (L. interrogans serovar Pomona and a clinical isolate, MoDCs-P) exhibited lower levels of CD80 and CD83 expression, suggesting partially impaired MoDC maturation, induced regulatory T cells (Tregs) while failing to induce CD4+ T cell proliferation, compared to MoDCs infected with non-pathogenic leptospires (L. biflexa serovar Patoc and L. meyeri serovar Ranarum, MoDCs-NP). In contrast, non-pathogenic leptospires enhanced MoDC maturation and induced higher T cell proliferation including IFN-γ-producing CD4+ T cells, indicative of a Th1-type response. Furthermore, pathogenic leptospires induced higher MoDC apoptosis through a cysteine aspartic acid-specific protease-3 (caspase-3)-dependent pathway and upregulated expression of the prostaglandin-endoperoxide synthase 2 (PTGS2) gene. Notably, prostaglandin E2 (PGE2), a product of the PTGS2 pathway, was found at higher levels in the sera of patients with acute leptospirosis and in the supernatant of MoDCs-P, possibly contributing to Treg induction, compared to those of healthy donors and MoDCs-NP, respectively. In conclusion, this study reveals a novel immunosuppressive strategy employed by pathogenic Leptospira to evade host immunity by partially impairing MoDC maturation and inducing Tregs. These findings deepen our understanding of leptospirosis pathogenesis in humans and may provide a novel strategy to modulate DCs for the prevention and treatment of the disease.

    وصف الملف: electronic resource

  4. 4
    دورية أكاديمية

    المصدر: Animals, Vol 14, Iss 6, p 893 (2024)

    الوصف: Leptospirosis is a zoonotic disease of significant concern for human and animal health, with domestic animals, including dogs, acting as reservoirs for human infection. Serology is widely used for leptospirosis diagnosis, even though the standard microscopic agglutination test (MAT) using a panel of serovars lacks specificity and can lead to detection limitations in certain regions. In this study, we aimed to develop an antibody detection tool for dogs using an indirect enzyme-linked immunosorbent assay (ELISA) with a set of local serovar isolates, including Paidjan, Dadas, and Mini, to enhance the accuracy of leptospirosis surveillance in our region. The specificity and sensitivity of various antigen preparations, namely leptospiral whole-cell protein (WCP), total membrane protein (TMP), and outer membrane protein (OMP), were assessed using sera from infected and non-infected dogs, as well as negative puppy sera. Leptospirosis diagnosis was supported using a genus-specific nested polymerase chain reaction test on all collected sera. Protein preparations were validated using SDS-PAGE and Western blotting analysis. In the results, the standard MAT failed to detect antibodies in any of the dogs confirmed as being infected using PCR and isolation, highlighting its limitations. In contrast, the OMP-based ELISAs using local isolates of Leptospira serovars gave positive results with sera from all infected dogs, and negative results with sera from all dogs from non-endemic areas. IgG titres of infected and unvaccinated dogs from endemically affected areas were significantly higher than those in non-endemic regions. Using the OMP-based IgG/ELISAs with the local serovar Dadas resulted in higher specificity and lower sensitivity than when using the WCP- and TMP-based IgG/ELISAs. Agreement analysis revealed fair and moderate concordance between OMP-based IgG/ELISAs and PCR results, whereas slight and fair agreement was observed between OMP-based ELISAs and the MAT. Overall, the modified OMP-based IgG/ELISAs, utilising relevant local serovar isolates from dogs, demonstrated improved accuracy in detecting leptospirosis in the study area, overcoming the limitations of the MAT. This study highlights the importance of identifying and incorporating these local circulating serovar isolates into serological techniques for leptospirosis diagnosis and surveillance.

    وصف الملف: electronic resource

  5. 5
    دورية أكاديمية

    المصدر: Scientific Reports, Vol 13, Iss 1, Pp 1-13 (2023)

    مصطلحات موضوعية: Medicine, Science

    الوصف: Abstract Colorectal cancer (CRC) is the third most common cancer worldwide. Dysbiosis of human gut microbiota has been linked to sporadic CRC. This study aimed to compare the gut microbiota profiles of 80 Thai volunteers over 50 years of age among 25 CRC patients, 33 patients with adenomatous polyp, and 22 healthy controls. The 16S rRNA sequencing was utilized to characterize the gut microbiome in both mucosal tissue and stool samples. The results revealed that the luminal microbiota incompletely represented the intestinal bacteria at the mucus layer. The mucosal microbiota in beta diversity differed significantly among the three groups. The stepwise increase of Bacteroides and Parabacteroides according to the adenomas–carcinomas sequence was found. Moreover, linear discriminant analysis effect size showed a higher level of Erysipelatoclostridium ramosum (ER), an opportunistic pathogen in the immunocompromised host, in both sample types of CRC patients. These findings indicated that the imbalance of intestinal microorganisms might involve in CRC tumorigenesis. Additionally, absolute quantitation of bacterial burden by quantitative real–time PCR (qPCR) confirmed the increasing ER levels in both sample types of cancer cases. Using ER as a stool–based biomarker for CRC detection by qPCR could predict CRC in stool samples with a specificity of 72.7% and a sensitivity of 64.7%. These results suggested ER might be a potential noninvasive marker for CRC screening development. However, a larger sample size is required to validate this candidate biomarker in diagnosing CRC.

    وصف الملف: electronic resource

  6. 6
    دورية أكاديمية

    المصدر: Nature Communications, Vol 14, Iss 1, Pp 1-15 (2023)

    مصطلحات موضوعية: Science

    الوصف: Abstract Establishment of an mRNA vaccine platform in low- and middle-income countries (LMICs) is important to enhance vaccine accessibility and ensure future pandemic preparedness. Here, we describe the preclinical studies of “ChulaCov19”, a SARS-CoV-2 mRNA encoding prefusion-unstabilized ectodomain spike protein encapsulated in lipid nanoparticles (LNP). In female BALB/c mice, ChulaCov19 at 0.2, 1, 10, and 30 μg elicits robust neutralizing antibody (NAb) and T cell responses in a dose-dependent relationship. The geometric mean titers (GMTs) of NAb against wild-type (WT, Wuhan-Hu1) virus are 1,280, 11,762, 54,047, and 62,084, respectively. Higher doses induce better cross-NAb against Delta (B.1.617.2) and Omicron (BA.1 and BA.4/5) variants. This elicited immunogenicity is significantly higher than those induced by homologous CoronaVac or AZD1222 vaccination. In a heterologous prime-boost study, ChulaCov19 booster dose generates a 7-fold increase of NAb against Wuhan-Hu1 WT virus and also significantly increases NAb response against Omicron (BA.1 and BA.4/5) when compared to homologous CoronaVac or AZD1222 vaccination. Challenge studies show that ChulaCov19 protects human-ACE-2-expressing female mice from COVID-19 symptoms, prevents viremia and significantly reduces tissue viral load. Moreover, anamnestic NAb response is undetectable in challenge animals. ChulaCov19 is therefore a promising mRNA vaccine candidate either as a primary or boost vaccination and has entered clinical development.

    وصف الملف: electronic resource

  7. 7
    دورية أكاديمية
  8. 8
    دورية أكاديمية

    المصدر: Frontiers in Cellular and Infection Microbiology, Vol 12 (2022)

    الوصف: The leptospirosis burden on humans, especially in high-risk occupational groups and livestock, leads to public health and economic problems. Leptospirosis subunit vaccines have been under development and require further improvement to provide complete protection. Adjuvants can be used to enhance the amplitude, quality, and durability of immune responses. Previously, we demonstrated that LMQ adjuvant (neutral liposomes containing monophosphoryl lipid A (MPL) and Quillaja saponaria derived QS21 saponin) promoted protective efficacy of LigAc vaccine against Leptospira challenge. To promote immunogenicity and protective efficacy of the subunit vaccines, three alternative adjuvants based on neutral liposomes or squalene-in-water emulsion were evaluated in this study. LQ and LQuil adjuvants combined the neutral liposomes with the QS21 saponin or Quillaja saponaria derived QuilA® saponin, respectively. SQuil adjuvant combined a squalene-in-water emulsion with the QuilA® saponin. The immunogenicity and protective efficacy of LigAc (20 µg) formulated with the candidate adjuvants were conducted in golden Syrian hamsters. Hamsters were vaccinated three times at a 2-week interval, followed by a homologous challenge of L. interrogans serovar Pomona. The results showed that LigAc combined with LQ, LQuil, or SQuil adjuvants conferred substantial antibody responses and protective efficacy (survival rate, pathological change, and Leptospira renal colonization) comparable to LMQ adjuvant. The LigAc+LQ formulation conferred 62.5% survival but was not significantly different from LigAc+LMQ, LigAc+LQuil, and LigAc+SQuil formulations (50% survival). This study highlights the potential of saponin-containing adjuvants LMQ, LQ, LQuil, and SQuil for both human and animal leptospirosis vaccines.

    وصف الملف: electronic resource

  9. 9
    دورية أكاديمية

    المصدر: PLoS Neglected Tropical Diseases, Vol 15, Iss 11, p e0009983 (2021)

    الوصف: Leptospirosis is a re-emerging zoonosis with a global distribution. Surface-exposed outer membrane proteins (SE-OMPs) are crucial for bacterial-host interactions. SE-OMPs locate and expose their epitope on cell surface where is easily accessed by host molecules. This study aimed to screen for surface-exposed proteins and their abundance profile of pathogenic Leptospira interrogans serovar Pomona. Two complementary approaches, surface biotinylation and surface proteolytic shaving, followed by liquid chromatography tandem-mass spectrometry (LC-MS/MS) were employed to identify SE-OMPs of intact leptospires. For quantitative comparison, in-depth label-free analysis of SE-OMPs obtained from each method was performed using MaxQuant. The total number of proteins identified was 1,001 and 238 for surface biotinylation and proteinase K shaving, respectively. Among these, 39 were previously known SE-OMPs and 68 were predicted to be localized on the leptospiral surface. Based on MaxQuant analysis for relative quantification, six known SE-OMPs including EF- Tu, LipL21, LipL41, LipL46, Loa22, and OmpL36, and one predicted SE-OMPs, LipL71 were found in the 20 most abundant proteins, in which LipL41 was the highest abundant SE-OMP. Moreover, uncharacterized LIC14011 protein (LIP3228 ortholog in serovar Pomona) was identified as a novel predicted surface βb-OMP. High-abundance leptospiral SE-OMPs identified in this study may play roles in virulence and infection and are potential targets for development of vaccine or diagnostic tests for leptospirosis.

    وصف الملف: electronic resource

  10. 10
    دورية أكاديمية

    المصدر: mSystems, Vol 6, Iss 1 (2021)

    الوصف: ABSTRACT The impact of gut fungi and (1→3)-β-d-glucan (BG), a major fungal cell wall component, on uremia was explored by Candida albicans oral administration in bilateral nephrectomy (BiNx) mice because of the prominence of C. albicans in the human intestine but not in mice. As such, BiNx with Candida administration (BiNx-Candida) enhanced intestinal injury (colon cytokines and apoptosis), gut leakage (fluorescein isothiocyanate [FITC]-dextran assay, endotoxemia, serum BG, and bacteremia), systemic inflammation, and liver injury at 48 h postsurgery compared with non-Candida BiNx mice. Interestingly, uremia-induced enterocyte apoptosis was severe enough for gut translocation of viable bacteria, as indicated by culture positivity for bacteria in blood, mesenteric lymph nodes (MLNs), and other organs, which was more severe in BiNx-Candida than in non-Candida BiNx mice. Candida induced alterations in the gut microbiota of BiNx mice as indicated by (i) the higher fungal burdens in the feces of BiNx-Candida mice than in sham-Candida mice by culture methods and (ii) increased Bacteroides with decreased Firmicutes and reduced bacterial diversity in the feces of BiNx-Candida mice compared with non-Candida BiNx mice by fecal microbiome analysis. In addition, lipopolysaccharide plus BG (LPS+BG), compared with each molecule alone, induced high supernatant cytokine levels, which were enhanced by uremic mouse serum in both hepatocytes (HepG2 cells) and macrophages (RAW264.7 cells). Moreover, LPS+BG, but not each molecule alone, reduced the glycolysis capacity and mitochondrial function in HepG2 cells as determined by extracellular flux analysis. Additionally, a probiotic, Lactobacillus rhamnosus L34 (L34), attenuated disease severity only in BiNx-Candida mice but not in non-Candida BiNx mice, as indicated by liver injury and serum cytokines through the attenuation of gut leakage, the fecal abundance of fungi, and fecal bacterial diversity but not fecal Gram-negative bacteria. In conclusion, Candida enhanced BiNx severity through the worsening of gut leakage and microbiota alterations that resulted in bacteremia, endotoxemia, and glucanemia. IMPORTANCE The impact of fungi in the intestine on acute uremia was demonstrated by the oral administration of Candida albicans in mice with the removal of both kidneys. Because fungi in the mouse intestine are less abundant than in humans, a Candida-administered mouse model has more resemblance to patient conditions. Accordingly, acute uremia, without Candida, induced intestinal mucosal injury, which resulted in the translocation of endotoxin, a major molecule of gut bacteria, from the intestine into blood circulation. In acute uremia with Candida, intestinal injury was more severe due to fungi and the alteration in intestinal bacteria (increased Bacteroides with decreased Firmicutes), leading to the gut translocation of both endotoxin from gut bacteria and (1→3)-β-d-glucan from Candida, which synergistically enhanced systemic inflammation in acute uremia. Both pathogen-associated molecules were delivered to the liver and induced hepatocyte inflammatory responses with a reduced energy production capacity, resulting in acute uremia-induced liver injury. In addition, Lactobacillus rhamnosus attenuated intestinal injury through reduced gut Candida and improved intestinal bacterial conditions.

    وصف الملف: electronic resource