يعرض 1 - 10 نتائج من 91 نتيجة بحث عن '"Jinghao Zheng"', وقت الاستعلام: 0.99s تنقيح النتائج
  1. 1
    دورية أكاديمية

    المصدر: iScience, Vol 26, Iss 10, Pp 108039- (2023)

    الوصف: Summary: Cardiac fibrosis is a major type of adverse remodeling, predisposing the disease progression to ultimate heart failure. However, the complexity of pathogenesis has hampered the development of therapies. One of the key mechanisms of cardiac diseases has recently been identified as long non-coding RNA (lncRNA) dysregulation. Through in vitro and in vivo studies, we identified an lncRNA NONMMUT067673.2, which is named as a cardiac fibrosis related lncRNA (CFRL). CFRL was significantly increased in both mouse model and cell model of cardiac fibrosis. In vitro, CFRL was proved to promote the proliferation and migration of cardiac fibroblasts by competitively binding miR-3113-5p and miR-3473d and indirectly up-regulating both CTGF and FN1. In vivo, silencing CFRL significantly mitigated cardiac fibrosis and improved left ventricular function. In short, CFRL may exert an essential role in cardiac fibrosis and interfering with CFRL might be considered as a multitarget strategy for cardiac fibrosis and heart failure.

    وصف الملف: electronic resource

  2. 2
    دورية أكاديمية

    المصدر: Reviews in Cardiovascular Medicine, Vol 24, Iss 5, p 143 (2023)

    الوصف: Background: This study aimed to determine whether the hemodynamics of patients with right ventricle outflow tract obstructive congenital heart disease (RVOTO-CHD) improve after corrective surgery by changing the ventilation mode. Methods: Patients with RVOTO-CHD who underwent corrective surgery were enrolled in this study. Echocardiography and advanced hemodynamic monitoring were performed using the pulse indicator continuous cardiac output (PiCCO) technology in the pressure-regulated volume control (PRVC) mode, followed with switching to the pressure support ventilation (PSV) mode and neurally adjusted ventilatory assist (NAVA) mode in random order. Results: Overall, 31 patients were enrolled in this study from April 2021 to October 2021. Notably, changing the ventilation mode from PRVC to a spontaneous mode (PSV or NAVA) led to better cardiac function outcomes, including right ventricular cardiac index (PRVC: 3.19 ± 1.07 L/min/m2 vs. PSV: 3.45 ± 1.32 L/min/m2 vs. NAVA: 3.82 ± 1.03 L/min/m2, p < 0.05) and right ventricle contractility (tricuspid annular peak systolic velocity) (PRVC: 6.58 ± 1.40 cm/s vs. PSV: 7.03 ± 1.33 cm/s vs. NAVA: 7.94 ± 1.50 cm/s, p < 0.05), as detected via echocardiography. Moreover, in the NAVA mode, PiCCO-derived cardiac index (PRVC: 2.92 ± 0.54 L/min/m2 vs. PSV: 3.04 ± 0.56 L/min/m2 vs. NAVA: 3.20 ± 0.62 L/min/m2, p < 0.05), stroke volume index (PRVC: 20.38 ± 3.97 mL/m2 vs. PSV: 21.23 ± 4.33 mL/m2 vs. NAVA: 22.00 ± 4.33 mL/m2, p < 0.05), and global end diastolic index (PRVC: 295.74 ± 78.39 mL/m2 vs. PSV: 307.26 ± 91.18 mL/m2 vs. NAVA: 323.74 ± 102.87 mL/m2, p < 0.05) improved, whereas extravascular lung water index significantly reduced (PRVC: 16.42 ± 7.90 mL/kg vs. PSV: 15.42 ± 5.50 mL/kg vs. NAVA: 14.4 ± 4.19 mL/kg, p < 0.05). Furthermore, peak inspiratory pressure, mean airway pressure, driving pressure, and compliance of the respiratory system improved in the NAVA mode. No deaths were reported in this study. Conclusions: We found that utilizing spontaneous ventilator modes, especially the NAVA mode, after corrective surgery in patients with RVOTO-CHD may improve their right heart hemodynamics and respiratory mechanics. However, further randomized controlled trials are required to verify the advantages of spontaneous ventilation modes in such patients. Clinical Trial Registration: NCT04825054.

    وصف الملف: electronic resource

  3. 3
    دورية أكاديمية

    المصدر: Frontiers in Pediatrics, Vol 9 (2022)

    الوصف: BackgroundOptimal management for congenitally corrected transposition of the great arteries (ccTGA) is controversial. We applied different surgical strategies based on individual variations in our single-centered practice over 10 years, aming to describe the mid-term results.MethodsFrom January 2008 to June 2021, 90 patients with ccTGA were reviewed and grouped by three different surgical strategies: 41 cases with biventricular correction as biventricular group, 11 cases with 1.5 ventricular correction as 1.5 ventricular group, and 38 cases with Fontan palliation as univentricular group. The mean age at primary surgery was 41.4 ± 22.7 months. Patients were followed for mortality, complications, reoperation, cardiac function, and valve status.ResultsThe median follow-up period was 5.1 years (range, 1.5–12.5 years). The overall 10-year survival and freedom from reoperation rate was 86.7 and 82.4%, respectively. There were 3 early deaths and 3 mid-term deaths in the biventricular group, while 2 early deaths and 1 mid-term deaths were reported in the univentricular group. Although 1.5 ventricular group presented no death and the fewest complications, we still found similar mortality (p = 0.340) and morbidity (p = 0.670) among the three groups. The bypass time, aortic-clamp time, and ICU stay length were the longest in the biventricular group, followed by the 1.5 ventricular group (p < 0.001). However, in mid-term follow-up, biventricular and 1.5 ventricular groups both showed excellent cardiac function and obvious improvement of tricuspid regurgitation (p = 0.008 and p = 0.051, respectively). Fontan palliation provided acceptable mid-term outcomes as well, despite a lower ejection fraction.ConclusionSatisfactory mid-term outcomes could be achieved for highly selected ccTGA patients using the whole spectrum of surgical techniques. Moreover, 1.5 ventricular correction, as a new emerging technique in recent years, might hold great promise in future practice.

    وصف الملف: electronic resource

  4. 4
    دورية أكاديمية

    المصدر: Reviews in Cardiovascular Medicine, Vol 23, Iss 11, p 376 (2022)

    الوصف: Background: A machine learning model was developed to estimate the in-hospital mortality risk after congenital heart disease (CHD) surgery in pediatric patient. Methods: Patients with CHD who underwent surgery were included in the study. A Extreme Gradient Boosting (XGBoost) model was constructed based onsurgical risk stratification and preoperative variables to predict the risk of in-hospital mortality. We compared the predictive value of the XGBoost model with Risk Adjustment in Congenital Heart Surgery-1 (RACHS-1) and Society of Thoracic Surgery-European Association for Cardiothoracic Surgery (STS-EACTS) categories. Results: A total of 24,685 patients underwent CHD surgery and 595 (2.4%) died in hospital. The area under curve (AUC) of the STS-EACTS and RACHS-1 risk stratification scores were 0.748 [95% Confidence Interval (CI): 0.707–0.789, p < 0.001] and 0.677 (95% CI: 0.627–0.728, p < 0.001), respectively. Our XGBoost model yielded the best AUC (0.887, 95% CI: 0.866–0.907, p < 0.001), and sensitivity and specificity were 0.785 and 0.824, respectively. The top 10 variables that contribute most to the predictive performance of the machine learning model were saturation of pulse oxygen categories, risk categories, age, preoperative mechanical ventilation, atrial shunt, pulmonary insufficiency, ventricular shunt, left atrial dimension, a history of cardiac surgery, numbers of defects. Conclusions: The XGBoost model was more accurate than RACHS-1 and STS-EACTS in predicting in-hospital mortality after CHD surgery in China.

    وصف الملف: electronic resource

  5. 5
    دورية أكاديمية

    المصدر: Frontiers in Cardiovascular Medicine, Vol 8 (2021)

    الوصف: Background: Although Fontan palliation seems to be inevitable for many patients with complex congenital heart defects (CHDs), candidates with appropriate conditions could be selected for biventricular conversion. We aimed to summarize our single-center experience in patient selection, surgical strategies, and early outcomes in biventricular conversion for the complex CHD.Methods: From April 2017 to June 2021, we reviewed 23 cases with complex CHD who underwent biventricular conversion. Patients were divided into two groups according to the development of the ventricles: balanced ventricular group (15 cases) and imbalanced ventricular group (8 cases). Early and short-term outcomes during the 30.2 months (range, 4.2–49.8 months) follow-up period were compared.Results: The overall mortality rate was 4.3% with one death case. In the balanced ventricular group, 6 cases received 3D printing for pre-operational evaluation. One case died because of heart failure in the early postoperative period. One case received reoperation due to the obstruction of the superior vena cava. In the imbalanced ventricular group, the mean left ventricular end-diastolic volume was (33.6 ± 2.1) ml/m2, the mean left ventricular end-diastolic pressure was 9.1 ± 1.9 mmHg, and 4 cases received 3D printing. No death occurred while one case implanted a pacemaker due to a third-degree atrioventricular block. The pre-operational evaluation and surgery simulation with a 3D printing model helped to reduce bypass time in the balanced group (p < 0.05), and reduced both bypass and aorta clamp time in the imbalanced group (p < 0.05). All patients presented great cardiac function in the follow-up period.Conclusion: Comprehensive evaluation, especially 3D printing technique, was conducive to finding the appropriate cases for biventricular conversion and significantly reduced surgery time. Biventricular conversion in selected patients led to promising clinical outcomes, albeit unverified long-term results.

    وصف الملف: electronic resource

  6. 6
    دورية أكاديمية

    المصدر: Scientific Reports, Vol 7, Iss 1, Pp 1-12 (2017)

    مصطلحات موضوعية: Medicine, Science

    الوصف: Abstract Long segmental repair of trachea stenosis is an intractable condition in the clinic. The reconstruction of an artificial substitute by tissue engineering is a promising approach to solve this unmet clinical need. 3D printing technology provides an infinite possibility for engineering a trachea. Here, we 3D printed a biodegradable reticular polycaprolactone (PCL) scaffold with similar morphology to the whole segment of rabbits’ native trachea. The 3D-printed scaffold was suspended in culture with chondrocytes for 2 (Group I) or 4 (Group II) weeks, respectively. This in vitro suspension produced a more successful reconstruction of a tissue-engineered trachea (TET), which enhanced the overall support function of the replaced tracheal segment. After implantation of the chondrocyte-treated scaffold into the subcutaneous tissue of nude mice, the TET presented properties of mature cartilage tissue. To further evaluate the feasibility of repairing whole segment tracheal defects, replacement surgery of rabbits’ native trachea by TET was performed. Following postoperative care, mean survival time in Group I was 14.38 ± 5.42 days, and in Group II was 22.58 ± 16.10 days, with the longest survival time being 10 weeks in Group II. In conclusion, we demonstrate the feasibility of repairing whole segment tracheal defects with 3D printed TET.

    وصف الملف: electronic resource

  7. 7
    دورية أكاديمية

    المصدر: PLoS ONE, Vol 12, Iss 1, p e0170351 (2017)

    مصطلحات موضوعية: Medicine, Science

    الوصف: Postnatal human cardiomyocyte proliferation declines rapidly with age, which has been suggested to be correlated with increases in oxidative DNA damage in mice and plays an important role in regulating cardiomyocyte proliferation. However, the relationship between oxidative DNA damage and age in humans is unclear.Sixty right ventricular outflow myocardial tissue specimens were obtained from ventricular septal defect infant patients during routine congenital cardiac surgery. These specimens were divided into three groups based on age: group A (age 0-6 months), group B (age, 7-12 months), and group C (>12 months). Each tissue specimen was subjected to DNA extraction, RNA extraction, and immunofluorescence.Immunofluorescence and qRT-PCR analysis revealed that DNA damage markers-mitochondrial DNA copy number, oxoguanine 8, and phosphorylated ataxia telangiectasia mutated-were highest in Group B. However immunofluorescence and qRT-PCR demonstrated that two cell proliferation markers, Ki67 and cyclin D2, were decreased with age. In addition, wheat germ agglutinin-staining indicated that the average size of cardiomyocytes increased with age.Oxidative DNA damage of cardiomyocytes was not correlated positively with age in human beings. Oxidative DNA damage is unable to fully explain the reduced proliferation of human cardiomyocytes.

    وصف الملف: electronic resource

  8. 8
    دورية أكاديمية
  9. 9

    المصدر: The Annals of Thoracic Surgery. 112:1537-1545

    الوصف: This study aimed to establish a model of pediatric heart failure (PHF) with concomitant left ventricle pressure overload by transverse aortic constriction (TAC) and study the PHF mechanism primarily at the gene transcription level.Twenty-four neonatal rabbits within 7 days after birth were randomly divided into sham (n = 8), moderate TAC (50% constriction, n = 8) and severe TAC (sTAC; 75% constriction, n = 8) groups. After the procedure transthoracic echocardiography was performed at 2, 4, and 6 weeks to measure left ventricle structure and function. Histologic staining and gene sequencing of left ventricle myocardial tissue were performed at 6 weeks.Six weeks after procedure transthoracic echocardiography showed that the pressure at the ligation of the aorta was 12.13 ± 0.95 mm Hg in the sTAC group, which was 26 times more than that of the sham group (P.05), and left ventricular dilatation began to appear in the sTAC group. Gene sequencing showed significantly different microRNA expression between the sTAC and sham groups. Bioinformatics analysis among the 3 groups showed that the expression of ocu-miR-411-5p, ocu-miR-214-3p, and ocu-miR-432-5p was decreased in the sTAC group compared with the sham group (P.05) and that the focal adhesion, insulin, and PI3K-Akt signaling pathways were also affected.Aortic constriction of 75% was optimal for the establishment of the PHF model. The expression of ocu-miR-411-5p, ocu-miR-214-3p, and ocu-miR-432-5p was significantly decreased, and the focal adhesion, insulin, and PI3K/AKT pathways may play significant roles in PHF progression.

  10. 10

    المصدر: IEEE Transactions on Semiconductor Manufacturing. 34:185-193

    الوصف: Fault prognosis under multiple fault modes is critical to predictive maintenance of complex tools in semiconductor manufacturing. However, the inherent data discrepancy among different tools and data imbalance with limited fault data coexist in real industrial scenario, making the task quite challenging. Therefore, this article proposes a novel two-stage deep transfer learning-based framework for prognosis under multiple fault modes, which aims at accurately predicting the time-to-failure of an Ion mill etching process. In the first stage, a base fault mode is selected and data alignment on condition monitoring data from multiple tools is performed via domain adversarial learning, wherein the temporal convolutional network is embedded to learn temporal representations from time-series sensor data. The second stage handles the prognostic tasks with remaining fault modes, the well-trained deep model from the first stage is employed as a pre-trained model, which will be fine-tuned with a relatively small amount of data from other fault modes, further accelerating the training process and enhancing the prediction performance. Comprehensive experiments are carried out on a real-world IME dataset, and the results show that the proposed model not only achieves better prediction accuracy but also saves much time for training compared with other existing methods.