يعرض 1 - 10 نتائج من 38 نتيجة بحث عن '"Huang, Lixiong"', وقت الاستعلام: 0.99s تنقيح النتائج
  1. 1
    دورية أكاديمية

    المساهمون: National Natural Science Foundation of China, National Key Research and Development Program of China, Postdoctoral Research Foundation of China, Fundamental Research Funds for the Central Universities

    المصدر: IEEE Sensors Journal ; volume 24, issue 12, page 20154-20166 ; ISSN 1530-437X 1558-1748 2379-9153

  2. 2
    دورية أكاديمية

    المساهمون: NSFC, Technology Innovation Program of Hubei Province, Postdoctoral Research Foundation of China, Fundamental Research Funds for the Central Universities, LIESMARS Special Research Funding

    المصدر: IEEE Internet of Things Journal ; volume 11, issue 4, page 6494-6507 ; ISSN 2327-4662 2372-2541

  3. 3
    دورية أكاديمية

    المساهمون: NSFC, Technology Innovation Program of Hubei Province, Postdoctoral Research Foundation of China, Fundamental Research Funds for the Central Universities, LIESMARS Special Research Funding

    المصدر: IEEE Internet of Things Journal ; volume 11, issue 4, page 6171-6184 ; ISSN 2327-4662 2372-2541

  4. 4
    دورية أكاديمية

    المساهمون: NSFC, Technology Innovation Program of Hubei Province, Postdoctoral Research Foundation of China, Fundamental Research Funds for the Central Universities, LIESMARS Special Research Funding

    المصدر: IEEE Internet of Things Journal ; volume 11, issue 1, page 848-862 ; ISSN 2327-4662 2372-2541

  5. 5
    دورية أكاديمية

    المؤلفون: Potort, Francesco, Torres-Sospedra, Joaquín, Quezada Gaibor, Darwin, Jiménez, Antonio Ramón, Seco, Fernando, Perez-Navarro, Antoni, Ortiz, Miguel, Zhu, Ni, Renaudin, Valerie, Ichikari, Ryosuke, Shimomura, Ryo, Kaichi, Tomoya, Zhou, Baoding, Liu, Xu, Gu, Zhining, Yang, Chengjing, Wu, Zhiqian, Xie, Doudou, Huang, Can, Zheng, Lingxiang, Peng, Ao, Jin, Ge, Wang, Qu, Luo, Haiyong, Xiong, Hao, Bao, Linfeng, Zhang, Pushuo, Zhao, Fang, Yu, Chia-An, Hung, Chung-Hao, Antsfeld, Leonid, Chidlovskii, Boris, Jiang, Haitao, Xia, Ming, Yan, Dayu, Li, Yuhang, Dong, Yitong, Silva, Ivo, Pendão, Cristiano, Meneses, Filipe, Nicolau, Maria João, Costa, António, Moreira, Adriano, De Cock, Cedric, Plets, David, Opiela, Miroslav, Dzama, Jakub, Zhang, Liqiang, Li, Hu, Chen, Boxuan, Liu, Yu, Yean, Seanglidet, Lim, Bo Zhi, Teo, Wei Jie, Lee, Bu Sung, OH, HL, ohta, nozomu, Nagae, Satsuki, Kurata, Takeshi, dongyan, wei, Ji, Xinchun, Zhang, Wenchao, Kram, Sebastian, Stahlke, Maximilian, Mutschler, Christopher, Crivello, Antonino, Barsocchi, Paolo, GIROLAMI, MICHELE, Palumbo, Filippo, Chen, Ruizhi, Wu, Yuan, Li, Wei, Yu, Yue, Xu, Shihao, Huang, Lixiong, Liu, Tao, Kuang, Jian, Niu, Xiaoji, Yoshida, Takuto, Nagata, Yoshiteru, Fukushima, Yuto, Fukatani, Nobuya, Hayashida, Nozomi, Asai, Yusuke, Urano, Kenta, Ge, Wenfei, Lee, Nien-Ting, Fang, Shih-Hau, Jie, You-Cheng, Young, Shawn-Rong, Chien, Ying-Ren, Yu, Chih-Chieh, Ma, Chengqi, Wu, Bang, Zhang, Wei, Wang, Yankun, Fan, Yonglei, Poslad, Stefan, Selviah, David, Wang, Weixi, Yuan, Hong, Yonamoto, Yoshitomo, Yamaguchi, Masahiro

    المساهمون: Universitat Oberta de Catalunya (UOC)

    الوصف: Every year, for ten years now, the IPIN competition has aimed at evaluating real-world indoor localisation systems by testing them in a realistic environment, with realistic movement, using the EvAAL framework. The competition provided a unique overview of the state-of-the-art of systems, technologies, and methods for indoorpositioning andnavigationpurposes.Throughfaircomparison of the performance achieved by each system, the competition was able to identify the most promising approaches and to pinpoint the most critical working conditions. In 2020, the competition included 5 diverse off-site off-site Tracks, each resembling real use cases and challenges for indoor positioning. The results in terms of participation and accuracy of the proposed systems have been encouraging. The best performing competitors obtained a third quartile of error of 1m for the Smartphone Track and 0.5m for the Footmounted IMU Track. While not running on physical systems, but only as algorithms, these results represent impressive achievements

    وصف الملف: application/pdf

  6. 6
    دورية أكاديمية

    المؤلفون: Potorti, Francesco, Torres-Sospedra, Joaquín, Quezada-Gaibor, Darwin, Jimenez, Antonio Ramon, Seco, Fernando, Perez-Navarro, Antoni, Ortiz, Miguel, Zhu, Ni, Renaudin, Valerie, Ichikari, Ryosuke, Shimomura, Ryo, Ohta, Nozomu, Nagae, Satsuki, Kurata, Takeshi, Wei, Dongyan, Ji, Xinchun, Zhang, Wenchao, Kram, Sebastian, Stahlke, Maximilian, Mutschler, Christopher, Crivello, Antonino, Barsocchi, Paolo, Girolami, Michele, Palumbo, Filippo, Chen, Ruizhi, Wu, Yuan, Li, Wei, Yu, Yue, Xu, Shihao, Huang, Lixiong, Liu, Tao, Kuang, Jian, Niu, Xiaoji, Yoshida, Takuto, Nagata, Yoshiteru, Fukushima, Yuto, Fukatani, Nobuya, Hayashida, Nozomi, Asai, Yusuke, Urano, Kenta, Ge, Wenfei, Lee, Nien-Ting, Fang, Shih-Hau, Jie, You-Cheng, Young, Shawn-Rong, Chien, Ying-Ren, Yu, Chih-Chieh, Ma, Chengqi, Wu, Bang, Zhang, Wei, Wang, Yankun, Fan, Yonglei, Poslad, Stefan, Selviah, David R., Wang, Weixi, Yuan, Hong, Yonamoto, Yoshitomo, Yamaguchi, Masahiro, Kaichi, Tomoya, Zhou, Baoding, Liu, Xu, Gu, Zhining, Yang, Chengjing, Wu, Zhiqian, Xie, Doudou, Huang, Can, Zheng, Lingxiang, Peng, Ao, Jin, Ge, Wang, Qu, Luo, Haiyong, Xiong, Hao, Bao, Linfeng, Zhang, Pushuo, Zhao, Fang, Yu, Chia-An, Hung, Chun-Hao, Antsfeld, Leonid, Silva, Ivo Miguel Menezes, Pendão, Cristiano Gonçalves, Meneses, Filipe, Nicolau, Maria João, Costa, António, Moreira, Adriano, Cock, Cedric De, Plets, David, Opiela, Miroslav, Jakub Džama, Zhang, Liqiang, Li, Hu, Chen, Boxuan, Liu, Yu, Yean, Seanglidet, Lim, Bo Zhi, Teo, Wei Jie, Lee, Bu Sung, Oh, Hong Lye

    الوصف: Every year, for ten years now, the IPIN competition has aimed at evaluating real-world indoor localisation systems by testing them in a realistic environment, with realistic movement, using the EvAAL framework. The competition provided a unique overview of the state-of-the-art of systems, technologies, and methods for indoor positioning and navigation purposes. Through fair comparison of the performance achieved by each system, the competition was able to identify the most promising approaches and to pinpoint the most critical working conditions. In 2020, the competition included 5 diverse off-site off-site Tracks, each resembling real use cases and challenges for indoor positioning. The results in terms of participation and accuracy of the proposed systems have been encouraging. The best performing competitors obtained a third quartile of error of 1 m for the Smartphone Track and 0.5 m for the Foot-mounted IMU Track. While not running on physical systems, but only as algorithms, these results represent impressive achievements. ; Track 3 organizers were supported by the European Union’s Horizon 2020 Research and Innovation programme under the Marie Skłodowska Curie Grant 813278 (A-WEAR: A network for dynamic WEarable Applications with pRivacy constraints), MICROCEBUS (MICINN, ref. RTI2018-095168-B-C55, MCIU/AEI/FEDER UE), INSIGNIA (MICINN ref. PTQ2018-009981), and REPNIN+ (MICINN, ref. TEC2017-90808-REDT). We would like to thanks the UJI’s Library managers and employees for their support while collecting the required datasets for Track 3. Track 5 organizers were supported by JST-OPERA Program, Japan, under Grant JPMJOP1612. Track 7 organizers were supported by the Bavarian Ministry for Economic Affairs, Infrastructure, Transport and Technology through the Center for Analytics-Data-Applications (ADA-Center) within the framework of “BAYERN DIGITAL II. ” Team UMinho (Track 3) was supported by FCT—Fundação para a Ciência e Tecnologia within the R&D Units Project Scope under Grant UIDB/00319/2020, and the Ph.D. ...

    وصف الملف: application/pdf

    العلاقة: info:eu-repo/grantAgreement/EC/H2020/813278/EU; info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F00319%2F2020/PT; info:eu-repo/grantAgreement/FCT/POR_NORTE/PD%2FBD%2F137401%2F2018/PT; https://ieeexplore.ieee.org/document/9439493Test; F. Potortì et al., "Off-Line Evaluation of Indoor Positioning Systems in Different Scenarios: The Experiences From IPIN 2020 Competition," in IEEE Sensors Journal, vol. 22, no. 6, pp. 5011-5054, 15 March15, 2022, doi:10.1109/JSEN.2021.3083149.; https://hdl.handle.net/1822/82092Test

  7. 7
    دورية أكاديمية

    المصدر: Journal of Physics: Conference Series ; volume 2203, issue 1, page 012054 ; ISSN 1742-6588 1742-6596

    الوصف: Currently, indoor location-based services (ILBSs) have increasing requirements in people’s daily life. In the meanwhile, the wearable devices are becoming more popular. In this paper, we studied a wearable system for indoor localization mainly based on INS/UWB. In order to achieve high-precision, stable, and continuous positioning, a sensor fusion method with anomaly detection is proposed. In the method, the sensor fusion method is derived from Bayesian estimation and a particle filter is developed to solve the nonlinearity problem and non-Gaussian errors for indoor positioning. In addition, the anomaly detection eliminates effects of NLoS and multipath effects significantly with the Mahalanobis distance. Two field experiments are conducted, and the results demonstrate that the 90% error of the proposed adaptive particle filter is 0.53 m, which is a 40% decrease compared with the PDR-only and UWB-only and classic PF, indicating better robustness and stability.

  8. 8
    دورية أكاديمية

    المساهمون: School of Mechanical and Aerospace Engineering

    الوصف: Laser-induced graphene (LIG) has the advantages of one-step fabrication, prominent mechanical performance, as well as high conductivity; it acts as the ideal material to fabricate flexible strain sensors. In this study, a wearable flexible strain sensor consisting of three-dimensional (3D) wavy LIG and silicone rubber was reported. With a laser to scan on a polyimide film, 3D wavy LIG could be synthesized on the wavy surface of a mold. The wavy-LIG strain sensor was developed by transferring LIG to silicone rubber substrate and then packaging. For stress concentration, the ultimate strain primarily took place in the troughs of wavy LIG, resulting in higher sensitivity and less damage to LIG during stretching. As a result, the wavy-LIG strain sensor achieved high sensitivity (gauge factor was 37.8 in a range from 0% to 31.8%, better than the planar-LIG sensor), low hysteresis (1.39%) and wide working range (from 0% to 47.7%). The wavy-LIG strain sensor had a stable and rapid dynamic response; its reversibility and repeatability were demonstrated. After 5000 cycles, the signal peak varied by only 2.32%, demonstrating the long-term durability. Besides, its applications in detecting facial skin expansion, muscle movement, and joint movement, were discussed. It is considered a simple, efficient, and low-cost method to fabricate a flexible strain sensor with high sensitivity and structural robustness. Furthermore, the wavy-LIG strain senor can be developed into wearable sensing devices for virtual/augmented reality or electronic skin. ; Published version

    وصف الملف: application/pdf

    العلاقة: Sensors; Huang, L., Wang, H., Wu, P., Huang, W., Gao, W., Fang, F., . . . Zhu, Z. (2020). Wearable flexible strain sensor based on three-dimensional wavy laser-induced graphene and silicone rubber. Sensors, 20(15), 4266-. doi:10.3390/s20154266; https://hdl.handle.net/10356/146055Test; 2-s2.0-85088901003; 15; 20

  9. 9
    دورية أكاديمية

    المساهمون: University Innovation and Entrepreneurship Education Major Project of Guangzhou City, Guangdong University Students Science and Technology Innovation Cultivation Special Fund, Key Laboratory Construction Projects in Guangdong, China Postdoctoral Science Foundation

    المصدر: AIP Advances ; volume 10, issue 10 ; ISSN 2158-3226

    الوصف: Electrospinning technology is considered to be one of the efficient, convenient, and low-cost technologies for preparing nanofibers, which can be applied in various industries, including filtration, catalysis, and energy. Here, aiming at the performance requirements of the nanometer fiber filter membrane for filtering PM2.5, the preparation of the nanofiber filter membrane was realized based on multi-needle electrospinning equipment. Meanwhile, by adding silver nitrate to the spinning solution, a polyvinylidene fluoride antibacterial nanofiber filter layer with high filtration efficiency and low resistance was successfully prepared on the traditional air conditioning filter meshes. We found that four key factors affecting the filtration performance include ambient humidity, substrate meshes, voltage, and production rate. Among them, voltage and production rate are the key factors affecting the filtration performance. According to the development trend of multifunctional nanofiber membranes, the preparation of air conditioning filters with nanofibers as the main filter material was realized, producing air conditioning filter membranes with antibacterial and deodorizing functions. This article provides a reliable experimental basis and empirical reference for the preparation of nanofiber membranes based on multi-needle electrospinning technology.

  10. 10
    دورية أكاديمية

    المساهمون: National Natural Science Foundation of China

    المصدر: IEEE Transactions on Vehicular Technology ; volume 72, issue 1, page 1159-1168 ; ISSN 0018-9545 1939-9359