يعرض 1 - 10 نتائج من 396 نتيجة بحث عن '"Grubaugh, Nathan D"', وقت الاستعلام: 0.89s تنقيح النتائج
  1. 1
    دورية أكاديمية

    المصدر: Vogels , C B F , Hill , V , Breban , M I , Chaguza , C , Paul , L M , Sodeinde , A , Taylor-Salmon , E , Ott , I M , Petrone , M E , Dijk , D , Jonges , M , Welkers , M R A , Locksmith , T , Dong , Y , Tarigopula , N , Tekin , O , Schmedes , S , Bunch , S , Cano , N , Jaber , R , Panzera , C , Stryker , I , Vergara , J ....

    الوصف: Background: The increasing burden of dengue virus on public health due to more explosive and frequent outbreaks highlights the need for improved surveillance and control. Genomic surveillance of dengue virus not only provides important insights into the emergence and spread of genetically diverse serotypes and genotypes, but it is also critical to monitor the effectiveness of newly implemented control strategies. Here, we present DengueSeq, an amplicon sequencing protocol, which enables whole-genome sequencing of all four dengue virus serotypes. Results: We developed primer schemes for the four dengue virus serotypes, which can be combined into a pan-serotype approach. We validated both approaches using genetically diverse virus stocks and clinical specimens that contained a range of virus copies. High genome coverage (>95%) was achieved for all genotypes, except DENV2 (genotype VI) and DENV 4 (genotype IV) sylvatics, with similar performance of the serotype-specific and pan-serotype approaches. The limit of detection to reach 70% coverage was 10-100 RNA copies/μL for all four serotypes, which is similar to other commonly used primer schemes. DengueSeq facilitates the sequencing of samples without known serotypes, allows the detection of multiple serotypes in the same sample, and can be used with a variety of library prep kits and sequencing instruments. Conclusions: DengueSeq was systematically evaluated with virus stocks and clinical specimens spanning the genetic diversity within each of the four dengue virus serotypes. The primer schemes can be plugged into existing amplicon sequencing workflows to facilitate the global need for expanded dengue virus genomic surveillance.

  2. 2
    دورية أكاديمية

    الوصف: The 2022 multicountry mpox outbreak concurrent with the ongoing Coronavirus Disease 2019 (COVID-19) pandemic further highlighted the need for genomic surveillance and rapid pathogen whole-genome sequencing. While metagenomic sequencing approaches have been used to sequence many of the early mpox infections, these methods are resource intensive and require samples with high viral DNA concentrations. Given the atypical clinical presentation of cases associated with the outbreak and uncertainty regarding viral load across both the course of infection and anatomical body sites, there was an urgent need for a more sensitive and broadly applicable sequencing approach. Highly multiplexed amplicon-based sequencing (PrimalSeq) was initially developed for sequencing of Zika virus, and later adapted as the main sequencing approach for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Here, we used PrimalScheme to develop a primer scheme for human monkeypox virus that can be used with many sequencing and bioinformatics pipelines implemented in public health laboratories during the COVID-19 pandemic. We sequenced clinical specimens that tested presumptively positive for human monkeypox virus with amplicon-based and metagenomic sequencing approaches. We found notably higher genome coverage across the virus genome, with minimal amplicon drop-outs, in using the amplicon-based sequencing approach, particularly in higher PCR cycle threshold (Ct) (lower DNA titer) samples. Further testing demonstrated that Ct value correlated with the number of sequencing reads and influenced the percent genome coverage. To maximize genome coverage when resources are limited, we recommend selecting samples with a PCR Ct below 31 Ct and generating 1 million sequencing reads per sample. To support national and international public health genomic surveillance efforts, we sent out primer pool aliquots to 10 laboratories across the United States, United Kingdom, Brazil, and Portugal. These public health laboratories successfully implemented ...

    العلاقة: https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.3002151Test; PLoS Biol. 2023 Jun 13;21(6):e3002151. doi:10.1371/journal.pbio.3002151. eCollection 2023 Jun; http://hdl.handle.net/10400.18/8955Test

  3. 3
    دورية أكاديمية

    المساهمون: Erazo, D., Grant, L., Ghisbain, G., Marini, G., Colón-González, F.J., Wint, W., Rizzoli, A., Van Bortel, W., Vogels, C.B.F., Grubaugh, N.D., Mengel, M., Frieler, K., Thiery, W., Dellicour, S.

    الوصف: West Nile virus (WNV) is an emerging mosquito-borne pathogen in Europe where it represents a new public health threat. While climate change has been cited as a potential driver of its spatial expansion on the continent, a formal evaluation of this causal relationship is lacking. Here, we investigate the extent to which WNV spatial expansion in Europe can be attributed to climate change while accounting for other direct human influences such as land-use and human population changes. To this end, we trained ecological niche models to predict the risk of local WNV circulation leading to human cases to then unravel the isolated effect of climate change by comparing factual simulations to a counterfactual based on the same environmental changes but a counterfactual climate where long-term trends have been removed. Our findings demonstrate a notable increase in the area ecologically suitable for WNV circulation during the period 1901-2019, whereas this area remains largely unchanged in a no-climate-change counterfactual. We show that the drastic increase in the human population at risk of exposure is partly due to historical changes in population density, but that climate change has also been a critical driver behind the heightened risk of WNV circulation in Europe

    العلاقة: info:eu-repo/semantics/altIdentifier/pmid/38331945; info:eu-repo/semantics/altIdentifier/wos/WOS:001159189300004; volume:15; issue:1; journal:NATURE COMMUNICATIONS; https://hdl.handle.net/10449/84215Test; info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85184789500

  4. 4
    دورية أكاديمية
  5. 5
    دورية أكاديمية

    المصدر: Nature Communications. 13(1)

    الوصف: Genomic sequencing is essential to track the evolution and spread of SARS-CoV-2, optimize molecular tests, treatments, vaccines, and guide public health responses. To investigate the global SARS-CoV-2 genomic surveillance, we used sequences shared via GISAID to estimate the impact of sequencing intensity and turnaround times on variant detection in 189 countries. In the first two years of the pandemic, 78% of high-income countries sequenced >0.5% of their COVID-19 cases, while 42% of low- and middle-income countries reached that mark. Around 25% of the genomes from high income countries were submitted within 21 days, a pattern observed in 5% of the genomes from low- and middle-income countries. We found that sequencing around 0.5% of the cases, with a turnaround time

    وصف الملف: application/pdf

  6. 6
    دورية أكاديمية

    المصدر: Cell. 184(19)

    الوصف: The emergence of the COVID-19 epidemic in the United States (U.S.) went largely undetected due to inadequate testing. New Orleans experienced one of the earliest and fastest accelerating outbreaks, coinciding with Mardi Gras. To gain insight into the emergence of SARS-CoV-2 in the U.S. and how large-scale events accelerate transmission, we sequenced SARS-CoV-2 genomes during the first wave of the COVID-19 epidemic in Louisiana. We show that SARS-CoV-2 in Louisiana had limited diversity compared to other U.S. states and that one introduction of SARS-CoV-2 led to almost all of the early transmission in Louisiana. By analyzing mobility and genomic data, we show that SARS-CoV-2 was already present in New Orleans before Mardi Gras, and the festival dramatically accelerated transmission. Our study provides an understanding of how superspreading during large-scale events played a key role during the early outbreak in the U.S. and can greatly accelerate epidemics.

    وصف الملف: application/pdf

  7. 7
    دورية أكاديمية

    المصدر: Cell reports. Medicine. 2(5)

    الوصف: Individuals with coronavirus disease 2019 (COVID-19) frequently develop neurological symptoms, but the biological underpinnings of these phenomena are unknown. Through single-cell RNA sequencing (scRNA-seq) and cytokine analyses of cerebrospinal fluid (CSF) and blood from individuals with COVID-19 with neurological symptoms, we find compartmentalized, CNS-specific T cell activation and B cell responses. All affected individuals had CSF anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibodies whose target epitopes diverged from serum antibodies. In an animal model, we find that intrathecal SARS-CoV-2 antibodies are present only during brain infection and not elicited by pulmonary infection. We produced CSF-derived monoclonal antibodies from an individual with COVID-19 and found that these monoclonal antibodies (mAbs) target antiviral and antineural antigens, including one mAb that reacted to spike protein and neural tissue. CSF immunoglobulin G (IgG) from 5 of 7 patients showed antineural reactivity. This immune survey reveals evidence of a compartmentalized immune response in the CNS of individuals with COVID-19 and suggests a role of autoimmunity in neurologic sequelae of COVID-19.

    وصف الملف: application/pdf

  8. 8
    دورية أكاديمية

    المصدر: Nature communications. 11(1)

    الوصف: Computational analyses of pathogen genomes are increasingly used to unravel the dispersal history and transmission dynamics of epidemics. Here, we show how to go beyond historical reconstructions and use spatially-explicit phylogeographic and phylodynamic approaches to formally test epidemiological hypotheses. We illustrate our approach by focusing on the West Nile virus (WNV) spread in North America that has substantially impacted public, veterinary, and wildlife health. We apply an analytical workflow to a comprehensive WNV genome collection to test the impact of environmental factors on the dispersal of viral lineages and on viral population genetic diversity through time. We find that WNV lineages tend to disperse faster in areas with higher temperatures and we identify temporal variation in temperature as a main predictor of viral genetic diversity through time. By contrasting inference with simulation, we find no evidence for viral lineages to preferentially circulate within the same migratory bird flyway, suggesting a substantial role for non-migratory birds or mosquito dispersal along the longitudinal gradient.

    وصف الملف: application/pdf

  9. 9
    دورية أكاديمية

    مصطلحات موضوعية: single mutation, ebola-virus, infection, emergence, monocytes, vector, target

    الوصف: Zika virus was introduced to the Western Hemisphere, spread rapidly, and led to the 2015-2016 Zika epidemic and a rise in congenital microcephaly. It remains unclear whether Zika virus evolved to become more transmissible directly before or during the epidemic. To investigate whether Zika evolved to become more transmissible, we engineered a library of recombinant viruses that represent twelve major Zika virus lineages that circulated throughout the Americas. We measured the replicative fitness of each of these lineages by infecting live mosquitoes and human cells that are relevant for disease or transmission. We found that two of the lineages, one that dominated Central America and another that existed mostly in the Caribbean, appear to replicate more efficiently in human cells. While the fitness changes do not appear to have significant effects on the 2015-2016 Zika epidemic, our analysis suggests Zika virus evolved at least twice during this outbreak. Monitoring the phenotypic evolution during the course of an outbreak can help control spread and mitigate disease. We believe this framework can be applied to study phenotypic evolution during future epidemics caused by emerging RNA viruses. RNA viruses have short generation times and high mutation rates, allowing them to undergo rapid molecular evolution during epidemics. However, the extent of RNA virus phenotypic evolution within epidemics and the resulting effects on fitness and virulence remain mostly unknown. Here, we screened the 2015-2016 Zika epidemic in the Americas for lineage-specific fitness differences. We engineered a library of recombinant viruses representing twelve major Zika virus lineages and used them to measure replicative fitness within disease-relevant human primary cells and live mosquitoes. We found that two of these lineages conferred significant in vitro replicative fitness changes among human primary cells, but we did not find fitness changes in Aedes aegypti mosquitoes. Additionally, we found evidence for elevated levels of positive ...

    وصف الملف: application/pdf

  10. 10
    دورية أكاديمية

    المصدر: Journal Articles: Epidemiology

    الوصف: The chronic infection hypothesis for novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant emergence is increasingly gaining credence following the appearance of Omicron. Here, we investigate intrahost evolution and genetic diversity of lineage B.1.517 during a SARS-CoV-2 chronic infection lasting for 471 days (and still ongoing) with consistently recovered infectious virus and high viral genome copies. During the infection, we find an accelerated virus evolutionary rate translating to 35 nucleotide substitutions per year, approximately 2-fold higher than the global SARS-CoV-2 evolutionary rate. This intrahost evolution results in the emergence and persistence of at least three genetically distinct genotypes, suggesting the establishment of spatially structured viral populations continually reseeding different genotypes into the nasopharynx. Finally, we track the temporal dynamics of genetic diversity to identify advantageous mutations and highlight hallmark changes for chronic infection. Our findings demonstrate that untreated chronic infections accelerate SARS-CoV-2 evolution, providing an opportunity for the emergence of genetically divergent variants.

    وصف الملف: application/pdf