يعرض 91 - 100 نتائج من 624 نتيجة بحث عن '"Glucagon-Like Peptide-1 Receptor / agonists"', وقت الاستعلام: 1.14s تنقيح النتائج
  1. 91
    دورية أكاديمية
  2. 92
    دورية أكاديمية
  3. 93
    دورية أكاديمية

    المصدر: Meditsinskiy sovet = Medical Council; № 23 (2022); 148-155 ; Медицинский Совет; № 23 (2022); 148-155 ; 2658-5790 ; 2079-701X

    وصف الملف: application/pdf

    العلاقة: https://www.med-sovet.pro/jour/article/view/7307/6529Test; Маевская М.В., Котовская Ю.В., Ивашкин В.Т., Ткачева О.Н., Трошина Е.А., Шестакова М.В. и др. Национальный Консенсус для врачей по ведению взрослых пациентов с неалкогольной жировой болезнью печени и ее основными коморбидными состояниями. Терапевтический архив. 2022;(2):216–253. https://doi.org/10.26442/00403660.2022.02.201363Test.; Бабенко А.Ю., Лаевская М.Ю. Неалкогольная жировая болезнь печени – взаимосвязи с метаболическим синдромом. РМЖ. 2018;(1):34–40. Режим доступа: https://www.rmj.ru/articles/endokrinologiya/Nealkogolynaya_ghirovaya_bolezny_pecheni_vzaimosvyazi_s_metabolicheskim_sindromomTest.; Pierantonelli I., Svegliati-Baroni G. Nonalcoholic fatty liver disease: basic pathogenetic mechanisms in the progression from NAFLD to NASH. Transplantation. 2019;103(1):e1–e13. https://doi.org/10.1097/TP.0000000000002480Test.; Day C.P., James O.F.W. Steatohepatitis: a tale of two “hits”? Gastroenterology. 1998;114(4):842–845. https://doi.org/10.1016/s0016-5085Test(98)70599-2.; Caligiuri A., Gentilini A., Marra F. Molecular pathogenesis of NASH. Int J Mol Sci. 2016;17(9):1575. https://doi.org/10.3390/ijms17091575Test.; Ouyang X., Cirillo P., Sautin Y., McCall S., Bruchette J.L., Diehl A.M. et al. Fructose consumption as a risk factor for non-alcoholic fatty liver disease. J Hepatol. 2008;48(6):993–999. https://doi.org/10.1016/j.jhep.2008.02.011Test.; Tappy L., Lê K.A. Metabolic effects of fructose and the worldwide increase in obesity. Physiol Rev. 2010;90(1):23–46. https://doi.org/10.1152/physrev.00019.2009Test.; Jegatheesan P., De Bandt J.P. Fructose and NAFLD: the multifaceted aspects of fructose metabolism. Nutrients. 2017;9(3):230. https://doi.org/10.3390/nu9030230Test.; Chandrasekaran K., Swaminathan K., Chatterjee S., Dey A. Apoptosis in HepG2 cells exposed to high glucose. Toxicol in Vitro. 2010;24(2):387–396. https://doi.org/10.1016/j.tiv.2009.10.020Test.; Civera M., Urios A., Garcia-Torres M.L., Ortega J., Martinez-Valls J., Cassinello N. et al. Relationship between insulin resistance, inflammation and liver cell apoptosis in patients with severe obesity. Diabetes Metab Res Rev. 2010;26(3):187–192. https://doi.org/10.1002/dmrr.1070Test.; Кучерявый Ю.А., Маевская Е.А., Ахтаева М.Л., Краснякова Е.А. Неалкогольный стеатогепатит и кишечная микрофлора: есть ли потенциал пребиотических препаратов в лечении? Медицинский совет. 2013;(2):46–51. Режим доступа: https://www.med-sovet.pro/jour/article/view/963/0Test.; Gambino R., Bugianesi E., Rosso C., Mezzabotta L., Pinach S., Alemanno N. et al. Different serum free fatty acid profiles in NAFLD subjects and healthy controls after oral fat load. Int J Mol Sci. 2016;17(4):479. https://doi.org/10.3390/ijms17040479Test.; Салль Т.С., Щербакова Е.С., Ситкин С.И., Вахитов Т.Я., Бакулин И.Г., Демьянова Е.В. Молекулярные механизмы развития неалкогольной жировой болезни печени. Профилактическая медицина. 2021;(4):120–131. https://doi.org/10.17116/profmed202124041120Test.; Bae C.S., Park S.H. The involvement of p38 MAPK and JNK activation in palmitic acid-induced apoptosis in rat hepatocytes. Journal of Life Science. 2009;19(8):1119–1124.; Petersen M.C., Shulman G.I. Mechanisms of insulin action and insulin resistance. Physiol Rev. 2018;98(4):2133–2223. https://doi.org/10.1152/physrev.00063.2017Test.; Пеньков Д.Н., Егоров А.Д., Мозговая М.Н., Ткачук В.А. Связь инсулиновой резистентности с адипогенезом: роль транскрипционных и секретируемых факторов. Биохимия. 2013;(1):14–26. Режим доступа: https://biochemistrymoscow.com/ru/archive/2013/78-01-0014Test.; Qiang G., Kong H.W., Xu S., Pham H.A., Parlee S.D., Burr A.A. et al. Lipodystrophy and severe metabolic dysfunction in mice with adipose tissue-specific insulin receptor ablation. Mol Мetab. 2016;5(7):480–490. https://doi.org/10.1016/j.molmet.2016.05.005Test.; Wu X., Chen K., Williams K.J. The role of pathway-selective insulin resistance and responsiveness in diabetic dyslipoproteinemia. Curr Opin Lipidol. 2012;23(4):334–344. https://doi.org/10.1097/MOL.0b013e3283544424Test.; Abulizi A., Perry R.J., Camporez J.P.G., Jurczak M.J., Petersen K.F., Aspichueta P. et al. A controlled‐release mitochondrial protonophore reverses hypertriglyceridemia, nonalcoholic steatohepatitis, and diabetes in lipodystrophic mice. FASEB J. 2017;31(7):2916–2924. https://doi.org/10.1096/fj.201700001RTest.; Bechmann L.P., Hannivoort R.A., Gerken G., Hotamisligil G.S., Trauner M., Canbay A. The interaction of hepatic lipid and glucose metabolism in liver diseases. J Hepatol. 2012;56(4):952–964. https://doi.org/10.1016/j.jhep.2011.08.025Test.; Mota M., Banini B.A., Cazanave S.C., Sanyal A.J. Molecular mechanisms of lipotoxicity and glucotoxicity in nonalcoholic fatty liver disease. Metabolism. 2016;65(8):1049–1061. https://doi.org/10.1016/j.metabol.2016.02.014Test.; Brandi G., Lorenzo S.D., Candela M., Pantaleo M.A., Bellentani S., Tovoli F. et al. Microbiota, NASH, HCC and the potential role of probiotics. Carcinogenesis. 2017;38(3):231–240. https://doi.org/10.1093/carcin/bgx007Test.; Monsour Jr.H.P., Frenette C.T., Wyne K. Fatty liver: a link to cardiovascular disease–its natural history, pathogenesis, and treatment. Methodist Debakey Cardiovasc J. 2012;8(3):21. https://doi.org/10.14797/mdcj-8-3-21Test.; Buechler C., Wanninger J., Neumeier M. Adiponectin, a key adipokine in obesity related liver diseases. World J Gastroenterol. 2011;17(23):2801. https://doi.org/10.3748/wjg.v17.i23.2801Test.; Engel J.A., Jerlhag E. Role of appetite-regulating peptides in the pathophysiology of addiction: implications for pharmacotherapy. CNS Drugs. 2014;28(10):875–886. https://doi.org/10.1007/s40263-014-0178-yTest.; Кытикова О.Ю., Новгородцева Т.П., Денисенко Ю.К., Антонюк М.В., Гвозденко Т.А. Толл-подобные рецепторы в патофизиологии ожирения. Ожирение и метаболизм. 2020;(1):56–63. https://doi.org/10.14341/omet10336Test.; Dube P.E., Brubaker P.L. Nutrient, neural and endocrine control of glucagon-like peptide secretion. Horm Metab Res. 2004;36(11–12):755–760. https://doi.org/10.1055/s-2004-826159Test.; Галстян Г.Р., Каратаева Е.А., Юдович Е.А. Эволюция агонистов рецепторов глюкагоноподобного пептида-1 в терапии сахарного диабета 2-го типа. Сахарный диабет. 2017;(4):286–298. https://doi.org/10.14341/DM8804Test.; Раскина К. Долгоживущий человеческий аналог ГПП-1. Актуальная эндокринология. 2015;6(1). Режим доступа: https://actendocrinology.ru/archives/2507Test.; Халимов Ю.Ш., Кузьмич В.Г. Органопротективные эффекты агонистов рецепторов глюкагоноподобного пептида 1-го типа по результатам доказательных исследований сердечно-сосудистой безопасности. Медицинский совет. 2019;(21):189–197. https://doi.org/10.21518/2079-701X-2019-21-189-197Test.; Scrocchi L.A., Brown T.J., Maclusky N., Brubaker P.L., Auerbach A.B., Joyner A.L., Drucker D.J. Glucose intolerance but normal satiety in mice with a null mutation in the glucagon-like peptide 1 receptor gene. Nat Мed. 1996;2(11):1254–1258. https://doi.org/10.1038/nm1196-1254Test.; Buteau J. GLP-1 receptor signaling: effects on pancreatic β-cell proliferation and survival. Diabetes Мetab. 2008;34(Suppl. 2):S73–77. https://doi.org/10.1016/S1262-3636Test(08)73398-6.; Fehmann H.C., Habener J.F. Insulinotropic hormone glucagon-like peptide-I (7-37) stimulation of proinsulin gene expression and proinsulin biosynthesis in insulinoma beta TC-1 cells. Endocrinology. 1992;130(1):159–166. https://doi.org/10.1210/endo.130.1.1309325Test.; Campbell J.E., Drucker D.J. Pharmacology, physiology, and mechanisms of incretin hormone action. Cell Metab. 2013;17(6):819–837. https://doi.org/10.1016/j.cmet.2013.04.008Test.; Cryer P.E. Minireview: Glucagon in the pathogenesis of hypoglycemia and hyperglycemia in diabetes. Endocrinology. 2012;153(3):1039–1048. https://doi.org/10.1210/en.2011-1499Test.; Buse J.B., Sesti G., Schmidt W.E., Montanya E., Chang C.T., Xu Y. et al. Switching to once-daily liraglutide from twice-daily exenatide further improves glycemic control in patients with type 2 diabetes using oral agents. Diabetes Care. 2010;33(6):1300–1303. https://doi.org/10.2337/dc09-2260Test.; Henry R.R., Buse J.B., Sesti G., Davies M.J., Jensen K.H., Brett J. et al. Efficacy of Anti Hyperglycemic Therapies and the Influence of Baseline Hemoglobin A1C: A Meta-Analysis of the Liraglutide Development Program. Endocr Pract. 2011;17(6):906–913. https://doi.org/10.4158/ep.17.6.906Test.; Monami M., Dicembrini I., Nreu B., Andreozzi F., Sesti G., Mannucci E. Predictors of response to glucagon-like peptide-1 receptor agonists: a meta-analysis and systematic review of randomized controlled trials. Acta Diabetol. 2017;54(12):1101–1114. https://doi.org/10.1007/s00592-017-1054-2Test.; Fan H., Pan Q.R., Xu Y., Yang X.C. Exenatide improves type 2 diabetes concomitant with non-alcoholic fatty liver disease. Arq Bras de Endocrinol Metabol. 2013;57(9):702–708. https://doi.org/10.1590/s0004-27302013000900005Test.; Cusi K., Sattar N., García-Pérez L.-E., Pavo I., Yu M., Robertson K.E. et al. Dulaglutide decreases plasma aminotransferases in people with Type 2 diabetes in a pattern consistent with liver fat reduction: a post hoc analysis of the AWARD programme. Diab Med. 2018;35(10):1434–1439. https://doi.org/10.1111/dme.13697Test.; Aroda V.R., Rosenstock J., Terauchi Y., Altuntas Y., Lalic N.M., Morales Villegas E.C. et al. PIONEER 1: randomized clinical trial of the efficacy and safety of oral semaglutide monotherapy in comparison with placebo in patients with type 2 diabetes. Diabetes Care. 2019;42(9):1724–1732. https://doi.org/10.2337/dc19-0749Test.; Гоникова З.З., Никольская А.О., Кирсанова Л.А., Шагидулин М.Ю., Онищенко Н.А., Севастьянов В.И. Сравнительный анализ эффективности стимуляции процессов регенерации печени клетками костного мозга и общей РНК этих клеток. Вестник трансплантологии и искусственных органов. 2019;(1):113–121. https://doi.org/10.15825/1995-1191-2019-1-113-121Test.; Feng W., Bi Y., Li P., Yin T.T., Gao C.X., Shen S.M. et al. Randomized trial comparing the effects of gliclazide, liraglutide, and metformin on diabetes with non‐alcoholic fatty liver disease. J Diabetes. 2017;9(8):800–809. https://doi.org/10.1111/jdi.12888Test.; Gluud L.L., Knop F.K., Vilsbоll T. Effects of lixisenatide on elevated liver transaminases: systematic review with individual patient data meta-analysis of randomised controlled trials on patients with type 2 diabetes. BMJ Open. 2014;4(12):e005325. https://doi.org/10.1136/bmjopen-2014-005325Test.; Sjоberg K.A., Holst J.J., Rattigan S., Richter E.A., Kiens B. GLP-1 increases microvascular recruitment but not glucose uptake in human and rat skeletal muscle. Am J Physiol Endocrinol Metab. 2014;306(4):E355–E362. https://doi.org/10.1152/ajpendo.00283.2013Test.; Nogueiras R., Pérez-Tilve D., Veyrat-Durebex C., Morgan D.A., Varela L., Haynes W.G. et al. Direct control of peripheral lipid deposition by CNS GLP-1 receptor signaling is mediated by the sympathetic nervous system and blunted in diet-induced obesity. J Neurosci. 2009;29(18):5916–5925. https://doi.org/10.1523/JNEUROSCI.5977-08.2009Test.; Richards P., Parker H.E., Adriaenssens A.E., Hodgson J.M., Cork S.C., Trapp S. et al. Identification and characterization of GLP-1 receptor-expressing cells using a new transgenic mouse model. Diabetes. 2014;63(4):1224–1233. https://doi.org/10.2337/db13-1440Test.; Baggio L.L., Ussher J.R., McLean B.A., Cao X., Kabir M.G., Mulvihill E.E. et al. The autonomic nervous system and cardiac GLP-1 receptors control heart rate in mice. Mol Metab. 2017;6(11):1339–1349. https://doi.org/10.1016/j.molmet.2017.08.010Test.; Szablowski J.O., Lee-Gosselin A., Lue B., Malounda D., Shapiro M.G. Acoustically targeted chemogenetics for the non-invasive control of neural circuits. Nat Biomed Eng. 2018;2(7):475–484. https://doi.org/10.1038/s41551-018-0258-2Test.; Ерофеев А.И., Матвеев М.В., Терехин С.Г., Захарова О.А., Плотникова П.В., Власова О.Л. Оптогенетика – новый метод исследования нейрональной активности. Научно-технические ведомости Санкт-Петербургского государственного политехнического университета. Физико-математические науки. 2015;(3):61–74. Режим доступа: https://physmath.spbstu.ru/article/2015.29.7Test.; Gaykema R.P., Newmyer B.A., Ottolini M., Raje V., Warthen D.M., Lambeth P.S. et al. Activation of murine pre-proglucagon – producing neurons reduces food intake and body weight. J Сlin Invest. 2017;127(3):1031–1045. https://doi.org/10.1172/JCI81335Test.; Burmeister M.A., Ayala J.E., Smouse H., Landivar-Rocha A., Brown J.D., Drucker D.J. et al. The hypothalamic glucagon-like peptide 1 receptor is sufficient but not necessary for the regulation of energy balance and glucose homeostasis in mice. Diabetes. 2017;66(2):372–384. https://doi.org/10.2337/db16-1102Test.; Kooijman S., Wang Y., Parlevliet E.T., Boon M.R., Edelschaap D., Snaterse G. et al. Central GLP-1 receptor signalling accelerates plasma clearance of triacylglycerol and glucose by activating brown adipose tissue in mice. Diabetologia. 2015;58(11):2637–2646. https://doi.org/10.1007/s00125-015-3727-0Test.; Lockie S.H., Heppner K.M., Chaudhary N., Chabenne J.R., Morgan D.A., Veyrat-Durebex C. et al. Direct control of brown adipose tissue thermogenesis by central nervous system glucagon-like peptide-1 receptor signaling. Diabetes. 2012;61(11):2753–2762. https://doi.org/10.2337/db11-1556Test.; Beiroa D., Imbernon M., Gallego R., Senra A., Herranz D., Villarroya F. et al. GLP-1 agonism stimulates brown adipose tissue thermogenesis and browning through hypothalamic AMPK. Diabetes. 2014;63(10):3346–3358. https://doi.org/10.2337/db14-0302Test.; Brierley D.I., de Lartigue G. Reappraising the role of the vagus nerve in GLP‐1‐mediated regulation of eating. Br J Pharmacol. 2022;179(4):584–599. https://doi.org/10.1111/bph.15603Test.; Frias J.P., Bonora E., Ruiz L.N., Li Y.G., Yu Z., Milicevic Z. et al. Efficacy and safety of dulaglutide 3.0 mg and 4.5 mg versus dulaglutide 1.5 mg in metformin-treated patients with type 2 diabetes in a randomized controlled trial (AWARD-11). Diabetes Care. 2021;44(3):765–773. https://doi.org/10.2337/dc20-1473Test.; Newsome P.N., Buchholtz K., Cusi K., Linder M., Okanoue T., Ratziu V. et al. A placebo-controlled trial of subcutaneous semaglutide in nonalcoholic steatohepatitis. N Engl J Med. 2021;384(12):1113–1124. https://doi.org/10.1056/NEJMoa2028395Test.; O’Neil P.M., Birkenfeld A.L., McGowan B., Mosenzon O., Pedersen S.D., Wharton S. et al. Efficacy and safety of semaglutide compared with liraglutide and placebo for weight loss in patients with obesity: a randomised, double-blind, placebo and active controlled, dose-ranging, phase 2 trial. Lancet. 2018;392(10148):637–649. https://doi.org/10.1016/S0140-6736Test(18)31773-2.; Lomonaco R., Leiva E.G., Bril F., Shrestha S., Mansour L., Budd J. et al. Advanced liver fibrosis is common in patients with type 2 diabetes followed in the outpatient setting: the need for systematic screening. Diabetes Care. 2021;44(2):399–406. https://doi.org/10.2337/dc20-1997Test.; Seko Y., Sumida Y., Tanaka S., Mori K., Taketani H., Ishiba H. et al. Effect of 12‐week dulaglutide therapy in Japanese patients with biopsy‐proven non‐alcoholic fatty liver disease and type 2 diabetes mellitus. Hepatol Res. 2017;47(11):1206–1211. https://doi.org/10.1111/hepr.12837Test.; Mantovani A., Petracca G., Beatrice G., Csermely A., Lonardo A., Targher G. Glucagon-like peptide-1 receptor agonists for treatment of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis: an updated meta-analysis of randomized controlled trials. Metabolites. 2021;11(2):73. https://doi.org/10.3390/metabo11020073Test.; Patel Chavez C., Cusi K., Kadiyala S. The emerging role of glucagon-like Peptide-1 receptor agonists for the management of NAFLD. J Clin Endocrinol Metab. 2022;107(1):29–38. https://doi.org/10.1210/clinem/dgab578Test.; Ghosal S., Datta D., Sinha B. A meta-analysis of the effects of glucagon-like-peptide 1 receptor agonist (GLP1-RA) in nonalcoholic fatty liver disease (NAFLD) with type 2 diabetes (T2D). Sci Rep. 2021;11(1):1–8. https://doi.org/10.1038/s41598-021-01663-yTest.; https://www.med-sovet.pro/jour/article/view/7307Test

  4. 94
    دورية أكاديمية

    المساهمون: Pathology and Laboratory Medicine, School of Medicine

    المصدر: PMC

    وصف الملف: application/pdf

    العلاقة: Cureus; Zou S, McDow AD, Saeed Z, Hou T. Multifocal C-cell Hyperplasia and Marked Hypercalcitoninemia in a Diabetic Patient Treated With Glucagon-Like Peptide-1 Agonist With Concurrent Multinodular Goiter and Hyperparathyroidism. Cureus. 2023;15(1):e33384. Published 2023 Jan 5. doi:10.7759/cureus.33384; https://hdl.handle.net/1805/36799Test

  5. 95
    دورية أكاديمية

    المصدر: Riley , D R , Essa , H , Austin , P , Preston , F , Kargbo , I , Ibarburu , G H , Ghuman , R , Cuthbertson , D J , Lip , G Y H & Alam , U 2023 , ' All-cause mortality and cardiovascular outcomes with sodium-glucose Co-transporter 2 inhibitors, glucagon-like peptide-1 receptor agonists and with combination therapy in people with type 2 diabetes ' , Diabetes, Obesity and Metabolism , vol. 25 , no. 10 , pp. 2897-2909 . https://doi.org/10.1111/dom.15185Test

    وصف الملف: application/pdf

  6. 96
    دورية أكاديمية
  7. 97
    دورية أكاديمية

    المؤلفون: Fumitaka Okajima, 岡島 史宜

    المصدر: 日本医科大学医学会雑誌 / Nihon Ika Daigaku Igakkai Zasshi. 2023, 19(1):32

  8. 98
    دورية أكاديمية
  9. 99
    دورية أكاديمية
  10. 100