يعرض 1 - 10 نتائج من 124 نتيجة بحث عن '"Enjelvin, Noële"', وقت الاستعلام: 0.86s تنقيح النتائج
  1. 1
    دورية أكاديمية
  2. 2
    مؤتمر

    المساهمون: Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC), Institut Ecologie et Environnement - CNRS Ecologie et Environnement (INEE-CNRS), Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Terre et Environnement de Lorraine (OTELo), Institut national des sciences de l'Univers (INSU - CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), GeoRessources, Institut national des sciences de l'Univers (INSU - CNRS)-Centre de recherches sur la géologie des matières premières minérales et énergétiques (CREGU)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Bureau de Recherches Géologiques et Minières (BRGM), Laboratoire Sols et Environnement (LSE), Université de Lorraine (UL)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), This work is partly funded by the DEEPSURF project "Lorraine Université d’Excellence", ANR-15-IDEX-04-LUE

    المصدر: 15th Annual International Conference on Porous Media (InterPore 2023)
    https://hal.science/hal-04197694Test
    15th Annual International Conference on Porous Media (InterPore 2023), May 2023, Edimbourg, United Kingdom.
    https://events.interpore.org/event/41Test/

    جغرافية الموضوع: Edimbourg, United Kingdom

    الوصف: This work is included in the scientific program of the GISFI research consortium (Groupement d'Intérêt Scientifique sur les Friches Industrielles - http://www.gisfi.univ-lorraine.frTest). ; International audience ; Light-non-aqueous phase liquids (LNAPLs) are important sources of soil contamination worldwide. Significant fluctuations of the soil bio/geochemical properties (metabolisms types, redox) and significant spatial-temporal variations of the pollutant saturation distribution occur on the LNAPL different phases (pure phase, dissolved, residual, entrapped droplets). These fluctuations are often strengthened by the multiple imbibition/drainage cycles caused by groundwater level variations that affect the three-phase fluids distribution in the soil (LNAPL, gas, and water) and the LNAPL release rates towards the dissolved and the gaseous phase (Gupta et al., 2019; Cavelan et al., 2022). Hence, the real LNAPL soil saturation distribution cannot be easily inferred from the thickness of LNAPL in monitoring wells, complicating the contamination characterization and the remediation actions, often long and costly. For these reasons, monitoring methods need to be improved to better characterize the contamination in integrating both the multi-compound and the multi-phase aspects. The relation between the LNAPL mobilization mechanisms and the groundwater level dynamic need also to be further understood, especially in the climate change context where increased groundwater fluctuations are expected (IPCC, 2021). For this purpose, we instrumented two lysimetric soil columns (2 m3) contaminated with LNAPL. The device combines in-situ monitoring (electrical permittivity and conductivity, soil moisture, temperature, pH, RedOx) and direct sampling and measurements in monitoring wells, gas collection chambers, and suction probes. This equipment allows the assessment of the multi-component and multi-phase LNAPL release (pure, dissolved, and gaseous phases) and soil saturation distributions (electrical permittivity and conductivity) ...

  3. 3
    مؤتمر

    المساهمون: Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC), Institut Ecologie et Environnement - CNRS Ecologie et Environnement (INEE-CNRS), Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Terre et Environnement de Lorraine (OTELo), Institut national des sciences de l'Univers (INSU - CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), GeoRessources, Institut national des sciences de l'Univers (INSU - CNRS)-Centre de recherches sur la géologie des matières premières minérales et énergétiques (CREGU)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Bureau de Recherches Géologiques et Minières (BRGM), Laboratoire Sols et Environnement (LSE), Université de Lorraine (UL)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), This work is partly funded by the LUE DEEPSURF (ANR-15-IDEX-04-LUE) and the BRGM., European Association of Geochemistry, Geochemical Society

    المصدر: Goldschmidt 2023 ; https://hal.science/hal-04197673Test ; Goldschmidt 2023, European Association of Geochemistry; Geochemical Society, Jul 2023, Lyon, France ; https://conf.goldschmidt.info/goldschmidt/2023/meetingapp.cgi/Paper/13759Test

    جغرافية الموضوع: Lyon, France

    الوصف: International audience ; In the last decades, the pressure exerted on soil and water resources rises due to human activities and climate change, threatening their long-term quality by contaminations and extreme events (IPCC, 2021). To improve contamination management in a climate change context, a better assessment of the effect of the climate-related factors (temperature, precipitation, and seasonal groundwater level variation patterns) on the fate of groundwater and soil pollutants must be better considered. For example, groundwater seasonal level variations and the temperature seems to influence the fate of light non-aqueous petroleum liquids (LNAPLs, ex: diesel fuel) in contaminated soils, affecting their volatilization, dissolution, and biodegradation patterns (Cavelan et al., 2022). Furthermore, a better coupling of in-situ and ex-situ monitoring methods is needed to better characterize these multi-component contaminations and their mobilization processes. To this end, we developed two instrumented lysimetric columns, allowing the monitoring of contaminated soils under controlled current and extreme climatic conditions. These instrumentations combine an in-situ physical-chemical and geophysical monitoring of the contaminated soil properties (water content, temperature, electrical conductivity and permittivity, pH, redox, weight), and the molecular characterization of contaminated water and surface gases (GC/MS, µGC). The effect on the fate of diesel-contaminated soils of the groundwater level fluctuations intensity and precipitation regime was tested over 120 days. The coupling of methods showed that: (1) 7% (lower intensity of water level variation) to 10% (high intensity of water level fluctuations) of the initial contamination was remobilized towards the dissolved phase and, in a less extant, to the gas phase. (2) Part of the dissolved contaminations was rapidly biodegraded. (3) An increase in the intensity of the water table level variations in the climate change context will accentuate the spreading ...

    العلاقة: hal-04197673; https://hal.science/hal-04197673Test

  4. 4
    دورية أكاديمية

    المساهمون: Laboratoire de géologie de l'ENS (LGENS), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Département des Géosciences - ENS Paris, École normale supérieure - Paris (ENS-PSL), Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-École normale supérieure - Paris (ENS-PSL), Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL), Centre national de recherches météorologiques (CNRM), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France-Centre National de la Recherche Scientifique (CNRS)

    المصدر: ISSN: 1027-5606.

    مصطلحات موضوعية: [SDE]Environmental Sciences

    الوصف: International audience ; Abstract. Soil water drainage is the main source of groundwater recharge and river flow. It is therefore a key process for water resource management. In this study, we evaluate the soil hydrology and the soil water drainage, simulated by the interactions between soil–biosphere–atmosphere (ISBA) land surface model currently used for hydrological applications from the watershed scale to the global scale, where parameters are generally not calibrated. This evaluation is done using seven lysimeters from two long-term model approach sites measuring hourly water dynamics between 2009 and 2019 in northeastern France. These 2 m depth lysimeters are filled with different soil types and are either maintained as bare soil or covered with vegetation. Four closed-form equations describing soil water retention and hydraulic conductivity functions are tested, namely the commonly used equations from Brooks and Corey (1966) and van Genuchten (1980), a combination of the van Genuchten (1980) soil water retention function with the Brooks and Corey (1966) unsaturated hydraulic conductivity function, and, for the very first time in a land surface model (LSM), a modified version of the van Genuchten (1980) equations, with a new hydraulic conductivity curve proposed by Iden et al. (2015). The results indicate good performance by ISBA with the different closure equations in terms of soil volumetric water content and water mass. The drained flow at the bottom of the lysimeter is well simulated, using Brooks and Corey (1966), while some weaknesses appear with van Genuchten (1980) due to the abrupt shape near the saturation of its hydraulic conductivity function. The mixed form or the new van Genuchten (1980) hydraulic conductivity function from Iden et al. (2015) allows the solving of this problem and even improves the simulation of the drainage dynamic, especially for intense drainage events. The study also highlights the importance of the vertical heterogeneity of the soil hydrodynamic parameters to correctly ...

  5. 5
    دورية أكاديمية

    المصدر: eISSN

    الوصف: Soil water drainage is the main source of groundwater recharge and river flow. It is therefore a key process for water resource management. In this study, we evaluate the soil hydrology and the soil water drainage, simulated by the interactions between soil–biosphere–atmosphere (ISBA) land surface model currently used for hydrological applications from the watershed scale to the global scale, where parameters are generally not calibrated. This evaluation is done using seven lysimeters from two long-term model approach sites measuring hourly water dynamics between 2009 and 2019 in northeastern France. These 2 m depth lysimeters are filled with different soil types and are either maintained as bare soil or covered with vegetation. Four closed-form equations describing soil water retention and hydraulic conductivity functions are tested, namely the commonly used equations from Brooks and Corey ( 1966 ) and van Genuchten ( 1980 ) , a combination of the van Genuchten ( 1980 ) soil water retention function with the Brooks and Corey ( 1966 ) unsaturated hydraulic conductivity function, and, for the very first time in a land surface model (LSM), a modified version of the van Genuchten ( 1980 ) equations, with a new hydraulic conductivity curve proposed by Iden et al. ( 2015 ) . The results indicate good performance by ISBA with the different closure equations in terms of soil volumetric water content and water mass. The drained flow at the bottom of the lysimeter is well simulated, using Brooks and Corey ( 1966 ) , while some weaknesses appear with van Genuchten ( 1980 ) due to the abrupt shape near the saturation of its hydraulic conductivity function. The mixed form or the new van Genuchten ( 1980 ) hydraulic conductivity function from Iden et al. ( 2015 ) allows the solving of this problem and even improves the simulation of the drainage dynamic, especially for intense drainage events. The study also highlights the importance of the vertical heterogeneity of the soil hydrodynamic parameters to correctly simulate the ...

    وصف الملف: application/pdf

  6. 6
    دورية أكاديمية

    المصدر: eISSN

    الوصف: Soil drainage is the main source of groundwater recharge and river flow. It is therefore a key process for water resource management. In this study, we evaluate the soil drainage simulated by the Interaction-Soil-Biosphere-Atmosphere (ISBA) land surface model currently used for hydrological applications from the watershed scale to the global scale. This validation is done using seven lysimeters from two long term experiment sites measuring hourly water dynamics between 2009 and 2019 in northeastern France. These 2-meter deep lysimeters are filled with different soil types and are either maintained bare soil or covered with vegetation. The commonly used closed-form equations describing soil-water retention and conductivity curves from Brooks and Corey (1966) and van Genuchten (1980) are tested. The results indicate a good performance by the different experiments in terms of soil volumetric water content and water mass. The drained flow at the bottom of the lysimeter is well modeled using Brooks and Corey (1966) while some weaknesses appears with van Genuchten (1980) due to the complexity of its hydraulic conductivity function. Combining the soil-water curve of van Genuchten (1980) with the hydraulic conductivity function of Brooks and Corey (1966) allow to solve this problem and even to improve the simulation of the drainage dynamic, especially for intense drainage events. The study highlights the importance of the vertical heterogeneity of the soil hydrodynamic parameters to correctly simulate the drainage dynamic, as well as the primary influence of the n and b parameters which characterize the shape of the soil-water retention curve.

    وصف الملف: application/pdf

  7. 7
    مؤتمر

    المساهمون: Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC), Institut Ecologie et Environnement - CNRS Ecologie et Environnement (INEE-CNRS), Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Terre et Environnement de Lorraine (OTELo), Institut national des sciences de l'Univers (INSU - CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), GeoRessources, Institut national des sciences de l'Univers (INSU - CNRS)-Centre de recherches sur la géologie des matières premières minérales et énergétiques (CREGU)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Bureau de Recherches Géologiques et Minières (BRGM), Laboratoire Sols et Environnement (LSE), Université de Lorraine (UL)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Université de Lorraine, ANR-15-IDEX-0004,LUE,Isite LUE(2015)

    المصدر: DEEPSURF International Conference 2021 ; https://hal.univ-lorraine.fr/hal-03445662Test ; DEEPSURF International Conference 2021, Oct 2021, Nancy, France. , 2021 ; https://deepsurf-ic.univ-lorraine.frTest/

    جغرافية الموضوع: Nancy, France

    الوصف: International audience ; The global water demand for industrial, agricultural, and drinking water needs increases but so is the number of soil and groundwater contaminations. Light Non-Aqueous Phase Liquids (LNAPLs) which come from the accidental release of refined petroleum products (diesel or fuel…) represent 40% of these contaminations. After their infiltration in the unsaturated zone, part of LNAPLs reaches and accumulates above the top of the water table as a mobile liquid phase able to be displaced by water table level variations. Hence, pump-induced, or seasonal variations in the groundwater level led to the significant vertical spreading of these light petroleum hydrocarbon contaminants at the capillary fringe that can temporarily favor their release into the air and groundwater. In the coming decades, an intensification of these groundwater level variations is expected in response to extreme climatic events and variations in precipitations patterns and water needs. This context may strongly impact the mobilization of these organic contaminants, impacting their release in the air and water and their attenuation rates. It is, therefore, essential to better understand the impact of the groundwater level fluctuation patterns on the fate of LNAPLs. To this end, an innovative system was developed this year at the GISFI station (Homécourt, France - http://gisfi.univ-lorraine.frTest). This device is composed of two lysimetric columns of soil equipped with in-situ sensors that combine indirect geophysical (complex electrical conductivity, permittivity), physical-chemical (pH, Eh, temperature), and geochemical measurements. This device allows to assess and compare the evolution of the LNAPL saturation distribution in soil, the nature and the amount of LNAPLs release into the air and groundwater during two groundwater level fluctuations and precipitation scenarios of 14 months: one based on the current rainfall and groundwater fluctuation patterns calculated after the last ten years regional climate records; the other ...

  8. 8
    مؤتمر

    المساهمون: Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC), Institut Ecologie et Environnement - CNRS Ecologie et Environnement (INEE-CNRS), Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Terre et Environnement de Lorraine (OTELo), Institut national des sciences de l'Univers (INSU - CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), GeoRessources, Institut national des sciences de l'Univers (INSU - CNRS)-Centre de recherches sur la géologie des matières premières minérales et énergétiques (CREGU)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Bureau de Recherches Géologiques et Minières (BRGM), Laboratoire Sols et Environnement (LSE), Université de Lorraine (UL)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Société Géologique de France, ANR-15-IDEX-0004,LUE,Isite LUE(2015)

    المصدر: 27e édition de la Réunion des Sciences de la Terre (RST)
    https://hal.univ-lorraine.fr/hal-03445696Test
    27e édition de la Réunion des Sciences de la Terre (RST), Nov 2021, Lyon, France. , 2021
    https://rst2020-lyon.sciencesconf.orgTest/

    جغرافية الموضوع: Lyon, France

    الوصف: National audience ; Les LNAPLs (Light-Non-Aqueous-Phase-Liquids) sont une source importante de contamination des sols. Lorsqu’ils migrent dans la zone non saturée, une partie des LNAPLs reste piégée par capillarité. D’autres, accumulés au toit de la nappe, génèrent sur le long terme un panache. Les variations saisonnières du niveau piézométrique entraînent une dispersion verticale importante de ces contaminants au niveau de la frange capillaire, favorisant leur propagation dans l’eau et l’atmosphère. Le GIEC prédit une intensification de ces variations piézométriques durant le prochain siècle en raison des variations d’intensité des précipitations (liées au changement climatique) et de l'utilisation croissante des ressources en eau. Dans ce contexte qui pourrait fortement impacter la remobilisation des LNAPLs, il est primordial de mieux comprendre l'impact des variations piézométriques sur les mécanismes de relargage des hydrocarbures. La mise en place d’un dispositif expérimental original couplant des mesures géophysiques indirectes (mesures de la conductivité électrique), physico-chimiques in situ (pH, Eh, température) et géochimiques permettra d’évaluer et de comparer la nature et la quantité des rejets de LNAPL au cours des fluctuations du niveau piézométrique entre deux systèmes expérimentaux contaminés : l’un soumis à un climat ‘normal’ basé sur les chroniques climatiques régionales, l’autre basé sur le scénario le plus extrême du GIEC. Cette étude sera conduite à différentes échelles (colonnes décimétriques de laboratoire et lysimètres de 2 m3) et sur des aquifères de différente complexité géologique. Les hydrocarbures mobilisés seront collectés via des bougies poreuses et des chambres de collecte de gaz et régulièrement analysés (GC-MS, IRTF). La complémentarité des différentes méthodes de monitoring du LNAPL seront comparées et des simulations numériques de l'écoulement et du transport du LNAPL seront réalisées afin d’identifier les mécanismes de remobilisation des contaminants.

  9. 9
    مؤتمر

    المساهمون: Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC), Institut Ecologie et Environnement - CNRS Ecologie et Environnement (INEE-CNRS), Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Terre et Environnement de Lorraine (OTELo), Institut national des sciences de l'Univers (INSU - CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Groupement d'Intérêt Scientifique sur les Friches Industrielles (GISFI), GeoRessources, Institut national des sciences de l'Univers (INSU - CNRS)-Centre de recherches sur la géologie des matières premières minérales et énergétiques (CREGU)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Bureau de Recherches Géologiques et Minières (BRGM), Laboratoire Sols et Environnement (LSE), Université de Lorraine (UL)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), This work is partly funded by the DEEPSURF project “Lorraine Université d’Excellence”, ANR-15-IDEX-04-LUE” and the BRGM., ANR-15-IDEX-0004,LUE,Isite LUE(2015)

    المصدر: 30th International Meeting on Organic Geochemistry (IMOG 2021)
    https://hal.univ-lorraine.fr/hal-03352369Test
    30th International Meeting on Organic Geochemistry (IMOG 2021), Sep 2021, Montpellier, France. pp.1-2, ⟨10.3997/2214-4609.202134017⟩
    https://www.earthdoc.org/content/papers/10.3997/2214-4609.202134017Test

    جغرافية الموضوع: Montpellier, France

    الوصف: International audience ; Light non-aqueous phase liquids (LNAPLs) are one of the most common sources of soil pollution worldwide. The Intergovernmental Panel on Climate Change (IPCC) predicts a significant increase of groundwater level fluctuations' intensity by 2100 that may greatly favor the remobilization of these contaminants in the environement. Yet, the effect of groundwater tables fluctuations on the LNAPL mobilization is not fully understood. To this aim, a new original experimental system combining in situ physical-chemical, geochemical, and indirect geophysical measurements was developed at the GISFI station, Homécourt, France to assess the effect of the groundwater level variations dynamic, under current and climate change conditions, on the LNAPL remobilization. Attention will be paid, especially, to the evolution of the concentration and composition of the dissolved LNAPL phase over time. Measurement, and monitoring of the pure LNAPL phase thickness and chemical composition variation will be also monitored. Numerical simulations of the LNAPL transport through the contaminated soil will also be carried out. These experiments should provide a better understanding of the fate of these hydrocarbons at contaminated soils and thus, a better assessment of the environmental risks associated with these contaminated sites and their evolution in the climate change context.

  10. 10
    مؤتمر

    المساهمون: Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC), Institut Ecologie et Environnement - CNRS Ecologie et Environnement (INEE-CNRS), Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Terre et Environnement de Lorraine (OTELo), Institut national des sciences de l'Univers (INSU - CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), GeoRessources, Institut national des sciences de l'Univers (INSU - CNRS)-Centre de recherches sur la géologie des matières premières minérales et énergétiques (CREGU)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Bureau de Recherches Géologiques et Minières (BRGM) (BRGM), Laboratoire Sols et Environnement (LSE), Université de Lorraine (UL)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Groupement d'Intérêt Scientifique sur les Friches Industrielles (GISFI), Université de Strasbourg, GISFI research consortium, ANR-15-IDEX-0004,LUE,Isite LUE(2015)

    المصدر: 1st OZCAR TERENO International conference: Advancing critical zone science
    https://hal.univ-lorraine.fr/hal-03379715Test
    1st OZCAR TERENO International conference: Advancing critical zone science, Oct 2021, Strasbourg, France. , 1st OZCAR TERENO international conference: Advancing critical zone science : abstract book, 37, pp.240-241, 2021
    https://ozcartereno2020.sciencesconf.orgTest/

    جغرافية الموضوع: Strasbourg, France

    الوصف: International audience ; Light Non-Aqueous Phase Liquids (LNAPLs) are an important source of soil contamination. When they infiltrate through the unsaturated zone, part of the LNAPLs remains trapped by capillary forces. The others accumulate above the top of the water table, forming a floating ‘free’ phase able to generate a long-term dissolved LNAPL plume. Seasonal variations in the groundwater level lead to significant vertical dispersion of these contaminants at the capillary fringe, favoring their release into the air and water. The IPCC predicts an intensification of these groundwater level variations over the next century in response to variations in rainfall intensity and frequency (related to climate change) and the increasing use of water resources. This context may strongly impact the LNAPL remobilization. It is, therefore, essential to better understand the impact of these groundwater level fluctuations on the remobilization processes of these hydrocarbon contaminants. To this end, an original experimental system combining indirect geophysical (electrical conductivity), in situ physical-chemical (pH, Eh, temperature), and geochemical measurements was developed at the GISFI station (Homécourt, France). This device allows the assessment and the comparison of nature and the amount of LNAPLs release into the atmosphere and water from a contaminated soil during two groundwater level fluctuations scenarios: one corresponding to the ‘actual’ rainfall pattern based on regional climate records; the other based on the most extreme IPCC scenario. This study will be conducted at different scales (laboratory decametric columns and 2 m3 lysimeters) and on soils of different geological complexity. The remobilized hydrocarbons will be collected via porous candles and gas collection chambers and regularly analyzed (GC-MS, FTIR). The complementarity of the monitoring methods will be evaluated and numerical simulations of the LNAPL flow and transport through the contaminated soil will be carried out to identify the ...