يعرض 1 - 10 نتائج من 108 نتيجة بحث عن '"Choong-Wan Woo"', وقت الاستعلام: 1.01s تنقيح النتائج
  1. 1
    دورية أكاديمية

    المصدر: Nature Communications, Vol 14, Iss 1, Pp 1-14 (2023)

    مصطلحات موضوعية: Science

    الوصف: Abstract Rumination is a cognitive style characterized by repetitive thoughts about one’s negative internal states and is a common symptom of depression. Previous studies have linked trait rumination to alterations in the default mode network, but predictive brain markers of rumination are lacking. Here, we adopt a predictive modeling approach to develop a neuroimaging marker of rumination based on the variance of dynamic resting-state functional connectivity and test it across 5 diverse subclinical and clinical samples (total n = 288). A whole-brain marker based on dynamic connectivity with the dorsomedial prefrontal cortex (dmPFC) emerges as generalizable across the subclinical datasets. A refined marker consisting of the most important features from a virtual lesion analysis further predicts depression scores of adults with major depressive disorder (n = 35). This study highlights the role of the dmPFC in trait rumination and provides a dynamic functional connectivity marker for rumination.

    وصف الملف: electronic resource

  2. 2
    دورية أكاديمية

    المصدر: Journal of Stroke, Vol 23, Iss 3, Pp 297-311 (2021)

    الوصف: The neurological symptoms of stroke have traditionally provided the foundation for functional mapping of the brain. However, there are many unresolved aspects in our understanding of cerebral activity, especially regarding high-level cognitive functions. This review provides a comprehensive look at the pathophysiology of post-stroke cognitive impairment in light of recent findings from advanced imaging techniques. Combining network neuroscience and clinical neurology, our research focuses on how changes in brain networks correlate with post-stroke cognitive prognosis. More specifically, we first discuss the general consequences of stroke lesions due to damage of canonical resting-state large-scale networks or changes in the composition of the entire brain. We also review emerging methods, such as lesion-network mapping and gradient analysis, used to study the aforementioned events caused by stroke lesions. Lastly, we examine other patient vulnerabilities, such as superimposed amyloid pathology and blood-brain barrier leakage, which potentially lead to different outcomes for the brain network compositions even in the presence of similar stroke lesions. This knowledge will allow a better understanding of the pathophysiology of post-stroke cognitive impairment and provide a theoretical basis for the development of new treatments, such as neuromodulation.

    وصف الملف: electronic resource

  3. 3
    دورية أكاديمية

    المصدر: eLife, Vol 11 (2022)

    الوصف: Pain is constructed through complex interactions among multiple brain systems, but it remains unclear how functional brain networks are reconfigured over time while experiencing pain. Here, we investigated the time-varying changes in the functional brain networks during 20 min capsaicin-induced sustained orofacial pain. In the early stage, the orofacial areas of the primary somatomotor cortex were separated from other areas of the somatosensory cortex and integrated with subcortical and frontoparietal regions, constituting an extended brain network of sustained pain. As pain decreased over time, the subcortical and frontoparietal regions were separated from this brain network and connected to multiple cerebellar regions. Machine-learning models based on these network features showed significant predictions of changes in pain experience across two independent datasets (n = 48 and 74). This study provides new insights into how multiple brain systems dynamically interact to construct and modulate pain experience, advancing our mechanistic understanding of sustained pain.

    وصف الملف: electronic resource

  4. 4
    دورية أكاديمية

    المصدر: NeuroImage, Vol 258, Iss , Pp 119355- (2022)

    الوصف: How do we incorporate contextual information to infer others’ emotional state? Here we employed a naturalistic context-dependent facial expression estimation task where participants estimated pleasantness levels of others’ ambiguous expression faces when sniffing different contextual cues (e.g., urine, fish, water, and rose). Based on their pleasantness rating data, we placed participants on a context-dependency continuum and mapped the individual variability in the context-dependency onto the neural representation using a representational similarity analysis. We found that the individual variability in the context-dependency of facial expression estimation correlated with the activity level of the pregenual anterior cingulate cortex (pgACC) and the amygdala and was also decoded by the neural representation of the ventral anterior insula (vAI). A dynamic causal modeling revealed that those with higher context-dependency exhibited a greater degree of the modulation from vAI to the pgACC. These findings provide novel insights into the neural circuitry associated with the individual variability in context-dependent facial expression estimation and the first empirical evidence for individual variability in the predictive accounts of affective states.

    وصف الملف: electronic resource

  5. 5
    دورية أكاديمية

    المصدر: PLoS Biology, Vol 20, Iss 5, p e3001620 (2022)

    مصطلحات موضوعية: Biology (General), QH301-705.5

    الوصف: Information is coded in the brain at multiple anatomical scales: locally, distributed across regions and networks, and globally. For pain, the scale of representation has not been formally tested, and quantitative comparisons of pain representations across regions and networks are lacking. In this multistudy analysis of 376 participants across 11 studies, we compared multivariate predictive models to investigate the spatial scale and location of evoked heat pain intensity representation. We compared models based on (a) a single most pain-predictive region or resting-state network; (b) pain-associated cortical-subcortical systems developed from prior literature ("multisystem models"); and (c) a model spanning the full brain. We estimated model accuracy using leave-one-study-out cross-validation (CV; 7 studies) and subsequently validated in 4 independent holdout studies. All spatial scales conveyed information about pain intensity, but distributed, multisystem models predicted pain 20% more accurately than any individual region or network and were more generalizable to multimodal pain (thermal, visceral, and mechanical) and specific to pain. Full brain models showed no predictive advantage over multisystem models. These findings show that multiple cortical and subcortical systems are needed to decode pain intensity, especially heat pain, and that representation of pain experience may not be circumscribed by any elementary region or canonical network. Finally, the learner generalization methods we employ provide a blueprint for evaluating the spatial scale of information in other domains.

    وصف الملف: electronic resource

  6. 6
    دورية أكاديمية

    المصدر: NeuroImage, Vol 247, Iss , Pp 118844- (2022)

    الوصف: Identifying biomarkers that predict mental states with large effect sizes and high test-retest reliability is a growing priority for fMRI research. We examined a well-established multivariate brain measure that tracks pain induced by nociceptive input, the Neurologic Pain Signature (NPS). In N = 295 participants across eight studies, NPS responses showed a very large effect size in predicting within-person single-trial pain reports (d = 1.45) and medium effect size in predicting individual differences in pain reports (d = 0.49). The NPS showed excellent short-term (within-day) test-retest reliability (ICC = 0.84, with average 69.5 trials/person). Reliability scaled with the number of trials within-person, with ≥60 trials required for excellent test-retest reliability. Reliability was tested in two additional studies across 5-day (N = 29, ICC = 0.74, 30 trials/person) and 1-month (N = 40, ICC = 0.46, 5 trials/person) test-retest intervals. The combination of strong within-person correlations and only modest between-person correlations between the NPS and pain reports indicate that the two measures have different sources of between-person variance. The NPS is not a surrogate for individual differences in pain reports but can serve as a reliable measure of pain-related physiology and mechanistic target for interventions.

    وصف الملف: electronic resource

  7. 7
    دورية أكاديمية

    المصدر: International Journal of Molecular Sciences, Vol 23, Iss 20, p 12268 (2022)

    الوصف: Sensory processing is a complex neurological process that receives, integrates, and responds to information from one’s own body and environment, which is closely related to survival as well as neurological disorders. Brain-wide networks of sensory processing are difficult to investigate due to their dynamic regulation by multiple brain circuits. Optogenetics, a neuromodulation technique that uses light-sensitive proteins, can be combined with functional magnetic resonance imaging (ofMRI) to measure whole-brain activity. Since ofMRI has increasingly been used for investigating brain circuits underlying sensory processing for over a decade, we systematically reviewed recent ofMRI studies of sensory circuits and discussed the challenges of optogenetic fMRI in rodents.

    وصف الملف: electronic resource

  8. 8
    دورية أكاديمية

    المصدر: Frontiers in Behavioral Neuroscience, Vol 14 (2020)

    الوصف: Social factors play a significant role in the health outcomes of those struggling with mental or physical health issues. People with mental illness experience more social stigmatization and receive less concern for their welfare than do those with physical illness. However, the cognitive and neural mechanisms by which such a bias in attitude arises remain unclear. This functional MRI study examined whether a lack of self-other similarity during mental state attribution affects perceivers’ theory of mind and, subsequently, how they value a patient’s welfare. During scanning, participants were asked to respond to an expression of caring and sympathetic concern from either their own perspective or while adopting the perspective of patients labeled physically ill or mentally ill. Participants reported that physically ill patients would share their affective responses to the situations, but mentally ill patients would not. Furthermore, mentalizing about physically ill patients was associated with increased activity in the ventromedial prefrontal cortex (vmPFC), a critical region for empathic concern and value-based decisions. In contrast, mentalizing about mentally ill patients preferentially engaged the dorsal anterior cingulate cortex (dACC) and anterior insula, regions previously implicated in empathic distress, in which activity correlated with individual differences in prejudice control. The findings indicate that a lack of perceived self-other similarity poses a challenge to the theory of mind and thus requires greater cognitive resources and neural computations. This might give rise to stereotyped beliefs about and prejudice against the mentally ill and failure to respond with appropriate empathy and care.

    وصف الملف: electronic resource

  9. 9
    دورية أكاديمية

    المصدر: NeuroImage, Vol 217, Iss , Pp 116898- (2020)

    الوصف: Demanding tasks can influence following behaviors but the underlying mechanisms remain largely unclear. In the present functional magnetic resonance imaging (fMRI) study, we used multivariate pattern analyses (MVPA) to compare patterns of brain activity associated with pain in response to noxious stimuli administered after a task requiring cognitive control (Stroop) and evaluate their functional interaction based on a mediation analysis model. We found that performing a difficult cognitive task leads to subsequent increases in pain and pain-related multivariate responses across the brain and within the anterior mid-cingulate cortex (aMCC). Moreover, an aMCC pattern predictive of task performance was further reactivated during pain and predicted ensuing increases in pain-related brain responses. This suggests functional interactions between distinct but partly co-localized neural networks underlying executive control and pain. These findings offer a new perspective on the functional role of the cingulate cortex in pain and cognition and provide a promising framework to investigate dynamical interactions between partly overlapping brain networks.

    وصف الملف: electronic resource

  10. 10
    دورية أكاديمية

    المصدر: Nature Communications, Vol 8, Iss 1, Pp 1-14 (2017)

    مصطلحات موضوعية: Science

    الوصف: Pain is affected by cerebral processes in addition to afferent nociceptive input. Here the authors develop an fMRI-based signature that predicts pain independent of the intensity of nociceptive signals and mediates the pain-modulating effects of several cognitive interventions.

    وصف الملف: electronic resource