يعرض 1 - 10 نتائج من 72 نتيجة بحث عن '"Chiung-Hsiang Cheng"', وقت الاستعلام: 0.84s تنقيح النتائج
  1. 1
    دورية أكاديمية

    المصدر: Frontiers in Microbiology, Vol 10 (2019)

    الوصف: Azorhizobium caulinodans ORS571 is a diazotroph that forms N2-fixing nodules on the roots and stems of the tropical legume Sesbania rostrata. Deletion of the parA gene of this bacterium results in cell cycle defects, pleiomorphic cell shape, and formation of immature stem nodules on its host plant. In this study, we constructed a parA overexpression mutant (PnptII-parA) to complement a previous study and provide new insights into bacteroid formation. We found that overproduction of ParA did not affect growth, cell morphology, chromosome partitioning, or vegetative nitrogen fixation in the free-living state. Under symbiosis, however, distinctive features, such as a single swollen bacteroid in one symbiosome, relatively narrow symbiosome space, and polyploid cells were observed. The morphotype of the PnptII-parA bacteroid is reminiscent of terminal differentiation in some IRLC indeterminate nodules, but S. rostrata is not thought to produce the NCR peptides that induce terminal differentiation in rhizobia. In addition, the transcript patterns of many symbiosis-related genes elicited by PnptII-parA were different from those elicited by the wild type. Accordingly, we propose that the particular symbiosome formation in PnptII-parA stem-nodules is due to cell cycle disruption caused by excess ParA protein in the symbiotic cells during nodulation.

    وصف الملف: electronic resource

  2. 2
    دورية أكاديمية

    المصدر: PLoS ONE, Vol 7, Iss 4, p e35336 (2012)

    مصطلحات موضوعية: Medicine, Science

    الوصف: Post-translational regulation plays an important role in cellular metabolism. Earlier studies showed that the activity of plastidial starch phosphorylase (Pho1) may be regulated by proteolytic modification. During the purification of Pho1 from sweet potato roots, we observed an unknown high molecular weight complex (HX) showing Pho1 activity. The two-dimensional gel electrophoresis, mass spectrometry, and reverse immunoprecipitation analyses showed that HX is composed of Pho1 and the 20S proteasome. Incubating sweet potato roots at 45°C triggers a stepwise degradation of Pho1; however, the degradation process can be partially inhibited by specific proteasome inhibitor MG132. The proteolytically modified Pho1 displays a lower binding affinity toward glucose 1-phosphate and a reduced starch-synthesizing activity. This study suggests that the 20S proteasome interacts with Pho1 and is involved in the regulation of the catalytic activity of Pho1 in sweet potato roots under heat stress conditions.

    وصف الملف: electronic resource

  3. 3
    دورية أكاديمية
  4. 4
    رسالة جامعية

    المؤلفون: Chiung-Hsiang Cheng, 鄭穹翔

    مرشدي الرسالة: 張芳嘉

    الوصف: 100
    Electroacupuncture (EA) possesses various therapeutic effects, including alleviation of pain, reduction of inflammation and improvement of sleep disturbance. The mechanisms of EA on sleep improvement, however, remain to be determined. It has been stated in ancient Chinese literature that the Anmian (EX17) acupoint is one of the trigger points that alleviates insomnia. We previously demonstrated that EA stimulation of Anmian acupoints in rats during the dark period enhanced non-rapid eye movement (NREM) sleep, which involves the induction of cholinergic activity in the nucleus tractus solitarius (NTS). In addition to cholinergic activation of the NTS, activation of the endogenous opioidergic system may also be a mechanism by which acupuncture affects sleep. Therefore, this study was designed to investigate the involvement of the NTS opioidergic system in EA-induced alterations in sleep. Our present results indicate that EA of Anmian acupoints increased NREM sleep, but not rapid eye movement (REM) sleep, during the dark period in rats. This enhancement in NREM sleep was dose-dependently blocked by microinjection of opioid receptor antagonist, naloxone, and the μ-opioid receptor antagonist, naloxonazine, into the NTS; administrations of δ-receptor antagonist, natrindole, and the κ-receptor antagonist, nor-binaltrophimine, however, did not affect EA-induced alterations in sleep. Furthermore, β-endorphin was significantly increased in both the brainstem and hippocampus after the EA stimuli, an effect blocked by administration of the muscarinic antagonist scopolamine into the NTS. Our findings suggest that mechanisms of EA-induced NREM sleep enhancement may be mediated, in part, by cholinergic activation, stimulation of the opiodergic neurons to increase the concentrations of β-endorphin and the involvement of the μ-opioid receptors. One ascending projection is from NTS to the ventromedial nucleus (VM) of the thalamus (the NTS-VM pathway). Wakefulness is accompanied by synaptic potentiation in the cortical circuits, whereas slow wave activity (SWA) during slow wave sleep (SWS) promotes a generalized depression or downscaling of synaptic strength. The VM receives opioidergic inputs from NTS and the activation of opioid receptors hyperpolarize neurons of VM. Accordingly, 10 Hz EA may increase synaptic activity of NTS and subsequently hyperpolarize and downscale the synaptic strength in the VM of thalamus by inhibitory afferents, which lead to the enhancement of SWS. Enhancement of excitatory synapses in NTS and inhibitory synapses in VM may respectively contribute to the up-regulation of synaptic strength in NTS and downscaling of synaptic strength in the VM after 10 Hz EA. Our results demonstrated that the synaptic density was increased in both NTS and VM after rats received 10 Hz EA stimuli, while the enhanced synaptic length was only observed in the NTS, suggesting that 10 Hz EA altered excitatory synaptic strength of NTS and inhibitory synaptic strength of VM by changing the synaptic morphology. Studies have shown that different kinds of endogenous opiate peptides and receptors may mediate the consequences of EA with different frequencies. Herein we further elucidated that high frequency (100 Hz) EA of Anmian enhanced NREM sleep during the dark period, but exhibited no direct effect on REM sleep. High frequency EA-induced NREM sleep enhancement was dose-dependently blocked by microinjection of naloxone or κ-receptor antagonist (nor-binaltrophimine) into the caudal NTS, but was affected neither by μ-(naloxonazine) nor δ-receptor antagonists (natrindole), suggesting the role of NTS κ-receptors in the enhancement of high frequency EA-induced NREM sleep. Current and previous results have combined to depict the opioid mechanisms of EA-induced sleep.

    وصف الملف: 101

  5. 5
    دورية أكاديمية

    المصدر: Taiwania, Vol 63, Iss 4, Pp 333-344 (2018)

    الوصف: The purpose of the present study was to identify the cardiac vagal nerve (CVN) of the turtle, to characterize its fiber composition, and to correlate this composition with cardioinhibitory functions. Turtles (Ocadia sinensis) were anesthetized with sodium pentobarbital. The CVN was identified anatomically as a thoracic vagal branch going to the heart. Transection or reversal block of this branch completely abolished the negative chronotropic and inotropic effects produced by ipsilateral cervical vagal stimulation. Electron microscopic examination of the CVN revealed that it is comprised of 500 to 1800 axon fibers. Among these, 86% were unmyelinated and 14% were myelinated fibers. Compound action potentials of the CVN consisted of A, B, and C groups. A decrease in the heart rate or a reduction of ventricular contractility was observed with electrical stimulation of the cervical vagus at an intensity which activates the B-fiber group. When the stimulus intensity increased to recruit both the B- and C-fiber groups, maximal cardioinhibitory effects were observed. The negative chronotropic effect of the right vagus was greater than that of the left vagus with low-frequency stimulation. In contrast, stimulation of the left vagus produced greater negative inotropic effect. These data indicate that the turtle heart is innervated by a single pair of CVN. The cardioinhibitory functions are subserved by small myelinated and large unmyelinated fibers. Functionally distinct vagal neurons may be distributed unevenly in the turtle brain, such that the right vagal nerve contains more chronotropic while the left more inotropic motor fibers.

  6. 6
    دورية أكاديمية

    المصدر: Journal of Food and Drug Analysis, Vol 24, Iss 1, Pp 121-128 (2016)

    الوصف: Oyster-derived polysaccharides (OPS) have been shown to modulate the T helper (Th)1/Th2 immunobalance toward the Th1-dominant direction in antigen-primed splenocytes. In the present study, we hypothesized that OPS might attenuate intestinal inflammation associated with food allergy, a Th2-dominant immune disorder. BALB/c mice were sensitized twice with ovalbumin (OVA) absorbed to alum and then repeatedly challenged with intragastric OVA to induce intestinal allergic responses. The mice were administered by gavage with OPS and/or vehicle (distilled water) once/d during the two sensitization phases, and once every other day during the challenge phase. Administration with OPS attenuated OVA challenge-elicited diarrhea, and the infiltration of mast cells in the intestine. OPS demonstrated a protective effect on the reduced ratio of villus length over crypt depth of the intestine in allergic mice. Furthermore, OPS administration markedly attenuated the intestinal expression of the Th2 signature cytokine interleukin-4 (IL-4). Collectively, these results demonstrated the in vivo antiallergic activity of OPS, which is associated with the suppression of allergen-induced intestinal Th2 responses and mast cell activation.

  7. 7
    دورية أكاديمية

    المصدر: Evidence-Based Complementary and Alternative Medicine, Vol 2012 (2012)

    مصطلحات موضوعية: Other systems of medicine, RZ201-999

    الوصف: Previous results demonstrated that 10 Hz electroacupuncture (EA) of Anmian acupoints in rats during the dark period enhances slow wave sleep (SWS), which involves the induction of cholinergic activity in the caudal nucleus tractus solitarius (NTS) and subsequent activation of opioidergic neurons and 𝜇-receptors. Studies have shown that different kinds of endogenous opiate peptides and receptors may mediate the consequences of EA with different frequencies. Herein, we further elucidated that high-frequency (100 Hz)-EA of Anmian enhanced SWS during the dark period but exhibited no direct effect on rapid eye movement (REM) sleep. High-frequency EA-induced SWS enhancement was dose-dependently blocked by microinjection of naloxone or 𝜅-receptor antagonist (nor-binaltorphimine) into the caudal NTS, but was affected neither by 𝜇- (naloxonazine) nor 𝛿-receptor antagonists (natatrindole), suggesting the role of NTS 𝜅-receptors in the high-frequency EA-induced SWS enhancement. Current and previous results depict the opioid mechanisms of EA-induced sleep.

  8. 8
    دورية أكاديمية

    المصدر: Evidence-Based Complementary and Alternative Medicine, Vol 2011 (2011)

    مصطلحات موضوعية: Other systems of medicine, RZ201-999

    الوصف: Electroacupuncture (EA) possesses various therapeutic effects, including alleviation of pain, reduction of inflammation and improvement of sleep disturbance. The mechanisms of EA on sleep improvement, however, remain to be determined. It has been stated in ancient Chinese literature that the Anmian (EX17) acupoint is one of the trigger points that alleviates insomnia. We previously demonstrated that EA stimulation of Anmian acupoints in rats during the dark period enhances non-rapid eye movement (NREM) sleep, which involves the induction of cholinergic activity in the nucleus tractus solitarius (NTS). In addition to cholinergic activation of the NTS, activation of the endogenous opioidergic system may also be a mechanism by which acupuncture affects sleep. Therefore, this study was designed to investigate the involvement of the NTS opioidergic system in EA-induced alterations in sleep. Our present results indicate that EA of Anmian acupoints increased NREM sleep, but not rapid eye movement sleep, during the dark period in rats. This enhancement in NREM sleep was dose-dependently blocked by microinjection of opioid receptor antagonist, naloxone, and the μ-opioid receptor antagonist, naloxonazine, into the NTS; administrations of δ-receptor antagonist, natrindole, and the κ-receptor antagonist, nor-binaltrophimine, however, did not affect EA-induced alterations in sleep. Furthermore, β-endorphin was significantly increased in both the brainstem and hippocampus after the EA stimuli, an effect blocked by administration of the muscarinic antagonist scopolamine into the NTS. Our findings suggest that mechanisms of EA-induced NREM sleep enhancement may be mediated, in part, by cholinergic activation, stimulation of the opiodergic neurons to increase the concentrations of β-endorphin and the involvement of the μ-opioid receptors.

  9. 9

    المصدر: Folia morphologica. 78(2)

    الوصف: Background: The number and calibre of myelinated and unmyelinated fibres of the sacrococcygeal dorsal roots innervating the tail of rats were studied by means of light and electron microscopy. Materials and methods: There were an estimated total of 12,500 myelinated and 25,500 unmyelinated dorsal root fibres innervating the tail of a rat. Results: The results showed that from the second sacral (S2) to the fourth sacral (S4) segment, the fibre diameter spectrum of myelinated fibres within each dorsal root was bimodal with two peaks at 5 microns and 10 microns, respectively. The first sacral (S1) segment was composed of numerous smaller-size myelinated fibres, thus forming a right-skewed distribution. The coccygeal (Co) segments showed a unimodal distribution peaking at 10 microns for the first (Co1) segment and gradually shifting to 7 microns for the third (Co3) segment. Overall, there was a continuous relative increase of the larger vs. the smaller myelinated fibres from the sacral to coccygeal segments. The fibre diameter of unmyelinated fibres of all these roots was unimodal with a single peak at 0.5 microns. The ratio of unmy- elinated to myelinated fibre numbers was on average 2.83 for the S1–S2 roots, 1.66 for the S3–S4 roots, and 1.24 for the coccygeal roots. Conclusions: The comparison of the left- and right-side nerve fibres show that there was no significant difference, thus implying a symmetrical sensory innervation of the rat’s tail.

  10. 10

    الوصف: Azorhizobium caulinodans ORS571 is a diazotroph that forms N 2 -fixing nodules on the roots and stems of the tropical legume Sesbania rostrata. Deletion of the parA gene of this bacterium results in cell cycle defects, pleiomorphic cell shape, and formation of immature stem nodules on its host plant. In this study, we constructed a parA overexpression mutant (PnptII-parA) to complement a previous study and provide new insights into bacteroid formation. We found that overproduction of ParA did not affect growth, cell morphology, chromosome partitioning, or vegetative nitrogen fixation in the free-living state. Under symbiosis, however, distinctive features, such as a single swollen bacteroid in one symbiosome, relatively narrow symbiosome space, and polyploid cells were observed. The morphotype of the PnptII-parA bacteroid is reminiscent of terminal differentiation in some IRLC indeterminate nodules, but S. rostrata is not thought to produce the NCR peptides that induce terminal differentiation in rhizobia. In addition, the transcript patterns of many symbiosis-related genes elicited by PnptII-parA were different from those elicited by the wild type. Accordingly, we propose that the particular symbiosome formation in PnptII-parA stem-nodules is due to cell cycle disruption caused by excess ParA protein in the symbiotic cells during nodulation.