يعرض 1 - 10 نتائج من 199 نتيجة بحث عن '"Cheng, Guangliang"', وقت الاستعلام: 0.67s تنقيح النتائج
  1. 1
    تقرير

    الوصف: Motion forecasting plays a pivotal role in autonomous driving systems, enabling vehicles to execute collision warnings and rational local-path planning based on predictions of the surrounding vehicles. However, prevalent methods often assume complete observed trajectories, neglecting the potential impact of missing values induced by object occlusion, scope limitation, and sensor failures. Such oversights inevitably compromise the accuracy of trajectory predictions. To tackle this challenge, we propose an end-to-end framework, termed Multiscale Transformer (MSTF), meticulously crafted for incomplete trajectory prediction. MSTF integrates a Multiscale Attention Head (MAH) and an Information Increment-based Pattern Adaptive (IIPA) module. Specifically, the MAH component concurrently captures multiscale motion representation of trajectory sequence from various temporal granularities, utilizing a multi-head attention mechanism. This approach facilitates the modeling of global dependencies in motion across different scales, thereby mitigating the adverse effects of missing values. Additionally, the IIPA module adaptively extracts continuity representation of motion across time steps by analyzing missing patterns in the data. The continuity representation delineates motion trend at a higher level, guiding MSTF to generate predictions consistent with motion continuity. We evaluate our proposed MSTF model using two large-scale real-world datasets. Experimental results demonstrate that MSTF surpasses state-of-the-art (SOTA) models in the task of incomplete trajectory prediction, showcasing its efficacy in addressing the challenges posed by missing values in motion forecasting for autonomous driving systems.

    الوصول الحر: http://arxiv.org/abs/2407.05671Test

  2. 2
    تقرير

    الوصف: Dataset Distillation (DD) aims to distill knowledge from extensive datasets into more compact ones while preserving performance on the test set, thereby reducing storage costs and training expenses. However, existing methods often suffer from computational intensity, particularly exhibiting suboptimal performance with large dataset sizes due to the lack of a robust theoretical framework for analyzing the DD problem. To address these challenges, we propose the BAyesian optimal CONdensation framework (BACON), which is the first work to introduce the Bayesian theoretical framework to the literature of DD. This framework provides theoretical support for enhancing the performance of DD. Furthermore, BACON formulates the DD problem as the minimization of the expected risk function in joint probability distributions using the Bayesian framework. Additionally, by analyzing the expected risk function for optimal condensation, we derive a numerically feasible lower bound based on specific assumptions, providing an approximate solution for BACON. We validate BACON across several datasets, demonstrating its superior performance compared to existing state-of-the-art methods. For instance, under the IPC-10 setting, BACON achieves a 3.46% accuracy gain over the IDM method on the CIFAR-10 dataset and a 3.10% gain on the TinyImageNet dataset. Our extensive experiments confirm the effectiveness of BACON and its seamless integration with existing methods, thereby enhancing their performance for the DD task. Code and distilled datasets are available at BACON.
    Comment: 22 pages, 10 figures

    الوصول الحر: http://arxiv.org/abs/2406.01112Test

  3. 3
    تقرير

    الوصف: Open-vocabulary learning has emerged as a cutting-edge research area, particularly in light of the widespread adoption of vision-based foundational models. Its primary objective is to comprehend novel concepts that are not encompassed within a predefined vocabulary. One key facet of this endeavor is Visual Grounding, which entails locating a specific region within an image based on a corresponding language description. While current foundational models excel at various visual language tasks, there's a noticeable absence of models specifically tailored for open-vocabulary visual grounding. This research endeavor introduces novel and challenging OV tasks, namely Open-Vocabulary Visual Grounding and Open-Vocabulary Phrase Localization. The overarching aim is to establish connections between language descriptions and the localization of novel objects. To facilitate this, we have curated a comprehensive annotated benchmark, encompassing 7,272 OV-VG images and 1,000 OV-PL images. In our pursuit of addressing these challenges, we delved into various baseline methodologies rooted in existing open-vocabulary object detection, VG, and phrase localization frameworks. Surprisingly, we discovered that state-of-the-art methods often falter in diverse scenarios. Consequently, we developed a novel framework that integrates two critical components: Text-Image Query Selection and Language-Guided Feature Attention. These modules are designed to bolster the recognition of novel categories and enhance the alignment between visual and linguistic information. Extensive experiments demonstrate the efficacy of our proposed framework, which consistently attains SOTA performance across the OV-VG task. Additionally, ablation studies provide further evidence of the effectiveness of our innovative models. Codes and datasets will be made publicly available at https://github.com/cv516Buaa/OV-VGTest.

    الوصول الحر: http://arxiv.org/abs/2310.14374Test

  4. 4
    تقرير

    الوصف: Visual Grounding (VG) aims at localizing target objects from an image based on given expressions and has made significant progress with the development of detection and vision transformer. However, existing VG methods tend to generate false-alarm objects when presented with inaccurate or irrelevant descriptions, which commonly occur in practical applications. Moreover, existing methods fail to capture fine-grained features, accurate localization, and sufficient context comprehension from the whole image and textual descriptions. To address both issues, we propose an Iterative Robust Visual Grounding (IR-VG) framework with Masked Reference based Centerpoint Supervision (MRCS). The framework introduces iterative multi-level vision-language fusion (IMVF) for better alignment. We use MRCS to ahieve more accurate localization with point-wised feature supervision. Then, to improve the robustness of VG, we also present a multi-stage false-alarm sensitive decoder (MFSD) to prevent the generation of false-alarm objects when presented with inaccurate expressions. The proposed framework is evaluated on five regular VG datasets and two newly constructed robust VG datasets. Extensive experiments demonstrate that IR-VG achieves new state-of-the-art (SOTA) results, with improvements of 25\% and 10\% compared to existing SOTA approaches on the two newly proposed robust VG datasets. Moreover, the proposed framework is also verified effective on five regular VG datasets. Codes and models will be publicly at https://github.com/cv516Buaa/IR-VGTest.

    الوصول الحر: http://arxiv.org/abs/2307.12392Test

  5. 5
    تقرير

    الوصف: Change detection is an essential and widely utilized task in remote sensing that aims to detect and analyze changes occurring in the same geographical area over time, which has broad applications in urban development, agricultural surveys, and land cover monitoring. Detecting changes in remote sensing images is a complex challenge due to various factors, including variations in image quality, noise, registration errors, illumination changes, complex landscapes, and spatial heterogeneity. In recent years, deep learning has emerged as a powerful tool for feature extraction and addressing these challenges. Its versatility has resulted in its widespread adoption for numerous image-processing tasks. This paper presents a comprehensive survey of significant advancements in change detection for remote sensing images over the past decade. We first introduce some preliminary knowledge for the change detection task, such as problem definition, datasets, evaluation metrics, and transformer basics, as well as provide a detailed taxonomy of existing algorithms from three different perspectives: algorithm granularity, supervision modes, and learning frameworks in the methodology section. This survey enables readers to gain systematic knowledge of change detection tasks from various angles. We then summarize the state-of-the-art performance on several dominant change detection datasets, providing insights into the strengths and limitations of existing algorithms. Based on our survey, some future research directions for change detection in remote sensing are well identified. This survey paper will shed some light on the community and inspire further research efforts in the change detection task.
    Comment: 21 pages, 4 figures, 10 tables

    الوصول الحر: http://arxiv.org/abs/2305.05813Test

  6. 6
    تقرير

    الوصف: Visual segmentation seeks to partition images, video frames, or point clouds into multiple segments or groups. This technique has numerous real-world applications, such as autonomous driving, image editing, robot sensing, and medical analysis. Over the past decade, deep learning-based methods have made remarkable strides in this area. Recently, transformers, a type of neural network based on self-attention originally designed for natural language processing, have considerably surpassed previous convolutional or recurrent approaches in various vision processing tasks. Specifically, vision transformers offer robust, unified, and even simpler solutions for various segmentation tasks. This survey provides a thorough overview of transformer-based visual segmentation, summarizing recent advancements. We first review the background, encompassing problem definitions, datasets, and prior convolutional methods. Next, we summarize a meta-architecture that unifies all recent transformer-based approaches. Based on this meta-architecture, we examine various method designs, including modifications to the meta-architecture and associated applications. We also present several closely related settings, including 3D point cloud segmentation, foundation model tuning, domain-aware segmentation, efficient segmentation, and medical segmentation. Additionally, we compile and re-evaluate the reviewed methods on several well-established datasets. Finally, we identify open challenges in this field and propose directions for future research. The project page can be found at https://github.com/lxtGH/Awesome-Segmentation-With-TransformerTest. We will also continually monitor developments in this rapidly evolving field.
    Comment: Work in progress. Github: https://github.com/lxtGH/Awesome-Segmentation-With-TransformerTest

    الوصول الحر: http://arxiv.org/abs/2304.09854Test

  7. 7
    تقرير

    الوصف: Video segmentation aims to segment and track every pixel in diverse scenarios accurately. In this paper, we present Tube-Link, a versatile framework that addresses multiple core tasks of video segmentation with a unified architecture. Our framework is a near-online approach that takes a short subclip as input and outputs the corresponding spatial-temporal tube masks. To enhance the modeling of cross-tube relationships, we propose an effective way to perform tube-level linking via attention along the queries. In addition, we introduce temporal contrastive learning to instance-wise discriminative features for tube-level association. Our approach offers flexibility and efficiency for both short and long video inputs, as the length of each subclip can be varied according to the needs of datasets or scenarios. Tube-Link outperforms existing specialized architectures by a significant margin on five video segmentation datasets. Specifically, it achieves almost 13% relative improvements on VIPSeg and 4% improvements on KITTI-STEP over the strong baseline Video K-Net. When using a ResNet50 backbone on Youtube-VIS-2019 and 2021, Tube-Link boosts IDOL by 3% and 4%, respectively.
    Comment: ICCV-2023, Project page: https://github.com/lxtGH/Tube-LinkTest (fix typos and errors, update the results)

    الوصول الحر: http://arxiv.org/abs/2303.12782Test

  8. 8
    تقرير

    الوصف: Neural Architecture Search (NAS) has shown great potentials in automatically designing neural network architectures for real-time semantic segmentation. Unlike previous works that utilize a simplified search space with cell-sharing way, we introduce a new search space where a lightweight model can be more effectively searched by replacing the cell-sharing manner with cell-independent one. Based on this, the communication of local to global information is achieved through two well-designed modules. For local information exchange, a graph convolutional network (GCN) guided module is seamlessly integrated as a communication deliver between cells. For global information aggregation, we propose a novel dense-connected fusion module (cell) which aggregates long-range multi-level features in the network automatically. In addition, a latency-oriented constraint is endowed into the search process to balance the accuracy and latency. We name the proposed framework as Local-to-Global Information Communication Network Search (LGCNet). Extensive experiments on Cityscapes and CamVid datasets demonstrate that LGCNet achieves the new state-of-the-art trade-off between accuracy and speed. In particular, on Cityscapes dataset, LGCNet achieves the new best performance of 74.0\% mIoU with the speed of 115.2 FPS on Titan Xp.
    Comment: arXiv admin note: text overlap with arXiv:1909.06793

    الوصول الحر: http://arxiv.org/abs/2302.08481Test

  9. 9
    تقرير

    الوصف: Panoptic Part Segmentation (PPS) unifies panoptic and part segmentation into one task. Previous works utilize separate approaches to handle things, stuff, and part predictions without shared computation and task association. We aim to unify these tasks at the architectural level, designing the first end-to-end unified framework, Panoptic-PartFormer. Moreover, we find the previous metric PartPQ biases to PQ. To handle both issues, we first design a meta-architecture that decouples part features and things/stuff features, respectively. We model things, stuff, and parts as object queries and directly learn to optimize all three forms of prediction as a unified mask prediction and classification problem. We term our model as Panoptic-PartFormer. Second, we propose a new metric Part-Whole Quality (PWQ), better to measure this task from pixel-region and part-whole perspectives. It also decouples the errors for part segmentation and panoptic segmentation. Third, inspired by Mask2Former, based on our meta-architecture, we propose Panoptic-PartFormer++ and design a new part-whole cross-attention scheme to boost part segmentation qualities further. We design a new part-whole interaction method using masked cross attention. Finally, extensive ablation studies and analysis demonstrate the effectiveness of both Panoptic-PartFormer and Panoptic-PartFormer++. Compared with previous Panoptic-PartFormer, our Panoptic-PartFormer++ achieves 2% PartPQ and 3% PWQ improvements on the Cityscapes PPS dataset and 5% PartPQ on the Pascal Context PPS dataset. On both datasets, Panoptic-PartFormer++ achieves new state-of-the-art results. Our models can serve as a strong baseline and aid future research in PPS. The source code and trained models will be available at~\url{https://github.com/lxtGH/Panoptic-PartFormerTest}.
    Comment: Extension of PanopticPartFormer (ECCV 2022). Code: https://github.com/lxtGH/Panoptic-PartFormerTest. Update Results

    الوصول الحر: http://arxiv.org/abs/2301.00954Test

  10. 10
    تقرير

    الوصف: In this work, we focus on open vocabulary instance segmentation to expand a segmentation model to classify and segment instance-level novel categories. Previous approaches have relied on massive caption datasets and complex pipelines to establish one-to-one mappings between image regions and words in captions. However, such methods build noisy supervision by matching non-visible words to image regions, such as adjectives and verbs. Meanwhile, context words are also important for inferring the existence of novel objects as they show high inter-correlations with novel categories. To overcome these limitations, we devise a joint \textbf{Caption Grounding and Generation (CGG)} framework, which incorporates a novel grounding loss that only focuses on matching object nouns to improve learning efficiency. We also introduce a caption generation head that enables additional supervision and contextual modeling as a complementation to the grounding loss. Our analysis and results demonstrate that grounding and generation components complement each other, significantly enhancing the segmentation performance for novel classes. Experiments on the COCO dataset with two settings: Open Vocabulary Instance Segmentation (OVIS) and Open Set Panoptic Segmentation (OSPS) demonstrate the superiority of the CGG. Specifically, CGG achieves a substantial improvement of 6.8% mAP for novel classes without extra data on the OVIS task and 15% PQ improvements for novel classes on the OSPS benchmark.
    Comment: ICCV-2023

    الوصول الحر: http://arxiv.org/abs/2301.00805Test