يعرض 1 - 10 نتائج من 394 نتيجة بحث عن '"Changyu Li"', وقت الاستعلام: 0.72s تنقيح النتائج
  1. 1
    دورية أكاديمية

    المصدر: Frontiers in Immunology, Vol 15 (2024)

    الوصف: BackgroundThe gut microbiota (GM) has been implicated in neurological disorders, but the relationship with hydrocephalus, especially the underlying mechanistic pathways, is unclear. Using Mendelian randomization (MR), we aim to discover the mediating role of inflammatory factors in the relationship between GM and hydrocephalus.MethodsAfter removing confounders, univariable and multivariable MR analyses were performed using summary statistics to assess the causal relationships between GM, inflammatory factors (IL-17A and IL-27), and types of hydrocephalus. Meta-analyses were used to reconcile the differences in MR results between different hydrocephalus sources. Finally, mediator MR analyses were applied to determine the mediating effect of inflammatory factors. Various sensitivity analysis methods were employed to ensure the reliability and stability of the results.ResultsAfter correction for P-values, Firmicutes (phylum) (OR, 0.34; 95%CI, 0.17–0.69; P = 2.71E-03, PFDR = 2.44E-02) significantly reduced the risk of obstructive hydrocephalus. The remaining 18 different taxa of GM had potential causal relationships for different types of hydrocephalus. In addition, Firmicutes (phylum) decreased the risk of obstructive hydrocephalus by increasing levels of IL-17A (mediating effect = 21.01%), while Eubacterium ruminantium group (genus) increased the risk of normal-pressure hydrocephalus by decreasing levels of IL-27 (mediating effect = 7.48%).ConclusionWe reveal the connection between GM, inflammatory factors (IL-17A and IL-27), and hydrocephalus, which lays the foundation for unraveling the mechanism between GM and hydrocephalus.

    وصف الملف: electronic resource

  2. 2
    دورية أكاديمية

    المصدر: Journal of Functional Foods, Vol 118, Iss , Pp 106263- (2024)

    الوصف: Icariin (ICA), a natural flavonoid glucoside from traditional Chinese medicine, possesses various pharmacological properties such as anti-inflammatory, anti-aging, and neuroprotective effects. Recent studies suggest its potential in treating Alzheimer’s disease (AD). However, the exact mechanisms of how ICA modulates neuroinflammation in AD remain unclear. In this study, oral ICA administration improved cognitive function in mice, decreasing escape latency in behavioral tests and altering protein levels related to AD pathology, including boosting acetylcholine and reducing p-tau/tau and acetylcholinesterase. Additionally, in 3 × Tg-AD mice, ICA therapy inhibited microglia and astrocyte activation and reduced inflammatory cytokines (IL-1β, TNF-α, IL-6) at the protein level. RNA-seq analysis revealed decreased expression of Nrxn3, Meg3, and Malat1 genes in 3 × Tg-AD animals treated with ICA. Furthermore, ICA activated the Akt/GSK-3β signaling pathway, known for its role in neuroinflammation, suggesting a potential mechanism by which ICA suppresses inflammation. This study proposes Meg3 and Malat1 lncRNA as therapeutic targets against AD, offering a novel approach for combating neuroinflammation in AD through the inhibition of the Akt/GSK-3β pathway.

    وصف الملف: electronic resource

  3. 3
    دورية أكاديمية

    المصدر: Current Issues in Molecular Biology, Vol 46, Iss 1, Pp 430-449 (2024)

    الوصف: As transcription factors derived from transposase, FAR-RED IMPAIRED RESPONSE1 (FAR1) and its homolog FHY3 play crucial roles in the regulation of light signaling and various stress responses by coordinating the expression of downstream target genes. Despite the extensive investigation of the FAR1/FHY3 family in Arabidopsis thaliana and other species, a comprehensive examination of these genes in maize has not been conducted thus far. In this study, we employed a genomic mining approach to identify 16 ZmFAR1 genes in the maize inbred line B73, which were further classified into five subgroups based on their phylogenetic relationships. The present study characterized the predicted polypeptide sequences, molecular weights, isoelectric points, chromosomal distribution, gene structure, conserved motifs, subcellular localizations, phylogenetic relationships, and cis-regulatory elements of all members belonging to the ZmFAR1 family. Furthermore, the tissue-specific expression of the 16 ZmFAR1 genes was analyzed using RNA-seq, and their expression patterns under far-red light conditions were validated in the ear and tassel through qRT-qPCR. The observed highly temporal and spatial expression patterns of these ZmFAR1 genes were likely associated with their specific functional capabilities under different light conditions. Further analysis revealed that six ZmFAR1 genes (ZmFAR1-1, ZmFAR1-10, ZmFAR1-11, ZmFAR1-12, ZmFAR1-14, and ZmFAR1-15) exhibited a response to simulated shading treatment and actively contributed to the development of maize ears. Through the integration of expression quantitative trait loci (eQTL) analyses and population genetics, we identified the presence of potential causal variations in ZmFAR1-14 and ZmFAR1-9, which play a crucial role in regulating the kernel row number and kernel volume weight, respectively. In summary, this study represents the initial identification and characterization of ZmFAR1 family members in maize, uncovering the functional variation in candidate regulatory genes associated with the improvement of significant agronomic traits during modern maize breeding.

    وصف الملف: electronic resource

  4. 4
    دورية أكاديمية

    المصدر: Communications Earth & Environment, Vol 4, Iss 1, Pp 1-11 (2023)

    مصطلحات موضوعية: Geology, QE1-996.5, Environmental sciences, GE1-350

    الوصف: Abstract The Yellow River is a potentially important source of terrestrially derived phosphorus to the phosphorus limited Bohai Sea. However, seasonal variation in concentrations, partitioning and bioavailability of dissolved and particulate phosphorus along the length of the Yellow River are poorly constrained. Here, we measure dissolved and suspended particulate phosphorus at 72 stations from the source to the estuary of the Yellow River during the rainy season in 2020 and dry season in 2021. Mean concentrations of total phosphorus, total dissolved phosphorus and dissolved reactive phosphorus were higher in the rainy season than the dry season. Analysis with sequential fractionation indicated that generally phosphorus associated with calcium carbonate dominated the suspended particulate pool. However, phosphorus content and the relative contribution of iron-bound phosphorus in suspended particles increased during the dry season, suggesting seasonal variations in bioavailability. Reactivity of the phosphorus pools decreased from source to estuary, suggesting low export potential of bioavailable phosphorus to the Bohai Sea.

    وصف الملف: electronic resource

  5. 5
    دورية أكاديمية

    المصدر: Crystals, Vol 14, Iss 5, p 458 (2024)

    الوصف: The versatile electrocaloric (EC) behaviors of the (1-x)Pb(Mg1/3Nb2/3)O3-xPT (PMN-100xPT) single crystal are closely related to the multiple phase transitions under the multiple fields of electric field and temperature. In this work, the EC effect of -oriented PMN-30PT single crystals with chemical composition at morphotropic phase boundary has been studied during the phase transformation process from the ferroelectric rhombohedral (R) phase to the tetragonal (T) phase. Two consecutive negative EC peaks have been achieved for the first time. Based on the projection of the EC effect in the electric field-temperature phase diagram, the relationship between the EC behaviors and the phase transitions is further established. It was found that the monoclinic (M) phase actually existed during the transformation from the R phase to the T phase, and the related R-M phase transition and M-T phase transition could both induce negative EC peaks. Under the electric field of E = 10 kV/cm, the first negative EC peaks induced by the R-M phase transition is at 57 °C with ΔTmax = −0.11 K. And the M-T phase transition can produce a higher negative EC peak, and its value can reach −0.22 K at 68 °C. Based on thermodynamic calculations, the relationship between the entropy change in different phase transitions and the EC behaviors has been further elucidated. The negative EC effect originates from the structural entropy increase in the electric field-induced phase transition process. This work not only advances the research on the electrical properties of relaxor ferroelectric single crystals but also provides a new insight into high-performance ferroelectric materials design.

    وصف الملف: electronic resource

  6. 6
    دورية أكاديمية

    المصدر: Journal of Food Quality, Vol 2024 (2024)

    مصطلحات موضوعية: Nutrition. Foods and food supply, TX341-641

    الوصف: The nutritional value and flavor and texture characteristics of fruits from different Actinidia argute resources were scientifically evaluated and compared. Using 35 A. arguta fruits as materials, the amino acid composition and content were determined by an automatic amino acid analyzer, and differentiation analysis, amino acid nutritional value evaluation, TAV flavor analysis, correlation analysis, PCA comprehensive evaluation, and cluster analysis were conducted to clarify the diversity of A. arguta resources in terms of amino acid content, composition, and flavor characteristics. Analysis of differential results showed that the A. arguta resource fruits contained 17 amino acids with a total amino acid content of 384.20∼2590.56 mg/100 g. The results of the nutritional value evaluation showed that the Leu of the fruits of the A. arguta resources all conformed to the ideal model proposed by FAO/WHO, and the Leu content of all the resources exceeded the human body’s needs, and it was also found that the first limiting amino acid of the Actinidia argute resources was Ile and the second limiting amino acid was Lys. TAV of the flavor-presenting amino acids was calculated to evaluate the flavor-presenting taste characteristics, and the amino acids that influenced the flavor of A. arguta fruit were Glu and Cys. PCA showed that the 2 principal components could better reflect the comprehensive information of amino acids in A. arguta, and the cumulative variance contribution rate was 87.88%, which could represent the main trend of amino acids in A. arguta. A comprehensive amino acid evaluation model was established, and the composite scores indicated that the top 5 excellent resources were S4, S10, S18, S25, and S30. Hierarchical cluster analysis classified the 35 A. arguta resources into 4 categories, which better reflected the differences in amino acid content and composition, nutritional value, and taste characteristics among A. arguta fruits from different collection sites.

    وصف الملف: electronic resource

  7. 7
    دورية أكاديمية

    المصدر: International Journal of Analytical Chemistry, Vol 2024 (2024)

    مصطلحات موضوعية: Analytical chemistry, QD71-142

    الوصف: Radix Dipsaci (RD) is the dry root of the Dipsacus asper Wall. ex DC., which is commonly used for tonifying the kidney and strengthening bone. The purpose of this study was to analyze the difference between raw and salt-processed RD from the chemical composition comprehensively. The fingerprints of raw and salt-processed RD were established by HPLC-DAD to determine the contents of loganin (LN), asperosaponin VI (AVI), caffeic acid (CaA), dipsanoside A (DA), dipsanoside B (DB), chlorogenic acid (CA), loganic acid (LA), isochlorogenic acid A (IA), isochlorogenic acid B (IB), and isochlorogenic acid C (IC). The results showed that after processing with salt, the components with increased contents were LA, CaA, DA, and AVI, and the components with decreased contents were CA, LN, IB, IA, IC, and DB. Then, the chemometric methods such as principal component analysis (PCA) and fisher discriminant analysis (FDA) were used to evaluate the quality of raw and salt-processed RD. In the classification of raw and salt-processed RD, the order of importance of each chemical component was LA > DB > IA > IC > IB > LN > CA > DA > AVI > CaA. These integrated methods successfully assessed the quality of raw and salt-processed RD, which will provide guidance for the development of RD as a clinical medication.

    وصف الملف: electronic resource

  8. 8
    دورية أكاديمية

    المصدر: Biomedicine & Pharmacotherapy, Vol 170, Iss , Pp 116027- (2024)

    الوصف: Shen Qi Wan (SQW) has been proven to exert anti-inflammatory effects in the kidneys of CKD models accompanied by unclear therapeutic mechanisms. This study aims to evaluate the kidney-protective and anti-inflammatory effects of SQW and to elucidate its fundamental mechanisms for CKD treatment. Firstly, the main active components of SQW were identified by UPLC-Q-TOF/MS technique. Subsequently, we evaluated inflammatory factors, renal function and renal pathology changes following SQW treatment utilizing adenine-induced CKD mice and aquaporin 1 knockout (AQP1-/-) mice. Additionally, we conducted RNA-seq analysis and bioinformatics analysis to predict the SQW potential therapeutic targets and anti-nephritis pathways. Simultaneously, WGCNA analysis method and machine learning algorithms were used to perform a clinical prognostic analysis of potential biomarkers in CKD patients from the GEO database and validated through clinical samples. Lipopolysaccharide-induced HK-2 cells were further used to explore the mechanism. We found that renal collagen deposition was reduced, serum inflammatory cytokine levels decreased, and renal function was improved after SQW intervention. It can be inferred that β-defensin 1 (DEFB1) may be a pivotal target, as confirmed by serum and renal tissue samples from CKD patients. Furthermore, SQW assuages inflammatory responses by fostering AQP1-mediated DEFB1 expression was confirmed in in vitro and in vivo studies. Significantly, the renal-protective effect of SQW is to some extent attenuated after AQP1 gene knockout. SQW could reduce inflammatory responses by modulating AQP1 and DEFB1. These findings underscore the potential of SQW as a promising contender for novel prevention and treatment strategies within the ambit of CKD management.

    وصف الملف: electronic resource

  9. 9
    دورية أكاديمية

    المصدر: Foods, Vol 13, Iss 8, p 1247 (2024)

    الوصف: SO2 plays an important role in wine fermentation, and its effects on wine aroma are complex and diverse. In order to investigate the effects of different SO2 additions on the fermentation process, quality, and flavor of ‘Beibinghong’ ice wine, we fermented ‘Beibinghong’ picked in 2019. We examined the fermentation rate, basic physicochemical properties, and volatile aroma compound concentrations of ‘Beibinghong’ ice wine under different SO2 additions and constructed a fingerprint of volatile compounds in ice wine. The results showed that 44 typical volatile compounds in ‘Beibinghong’ ice wine were identified and quantified. The OAV and VIP values were calculated using the threshold values of each volatile compound, and t the effect of SO2 on the volatile compounds of ‘Beibinghong’ ice wine might be related to five aroma compounds: ethyl butyrate, ethyl propionate, ethyl 3-methyl butyrate-M, ethyl 3-methyl butyrate-D, and 3-methyl butyraldehyde. Tasting of ‘Beibinghong’ ice wine at different SO2 additions revealed that the overall flavor of ‘Beibinghong’ ice wine was the highest at an SO2 addition level of 30 mg/L. An SO2 addition level of 30 mg/L was the optimal addition level. The results of this study are of great significance for understanding the effect of SO2 on the fermentation of ‘Beibinghong’ ice wine.

    وصف الملف: electronic resource

  10. 10
    دورية أكاديمية

    المصدر: Small Science, Vol 3, Iss 9, Pp n/a-n/a (2023)

    الوصف: Vanadium oxides are highly valued as electrochromic materials because of their multicolor capabilities. However, their practical applications have been limited due to challenges such as the dissolution of vanadate into aqueous electrolytes, leading to poor long‐term stability. Herein, a solution is proposed to the vanadate dissolution issue by utilizing a hybrid electrolyte consisting of tetraethylene glycol dimethyl ether (TEGDME) and water. This electrolyte has the unique ability to form a robust cathode electrolyte interface layer on vanadium oxide electrodes. As a proof of concept, zinc‐anode‐based multicolor transparent electrochromic displays are prepared using layered potassium vanadate (K2V6O16·1.5H2O, KVO) with a TEGDME–water hybrid electrolyte. By soaking the KVO electrode in the hybrid electrolyte, it is demonstrated that KVO has remarkable stability against dissolution. Furthermore, it is shown that KVO has superior electrochromic performance compared to sodium vanadate (NaV3O8·1.5H2O, SVO), due to the wide KVO interlayer spacing. Given the enhanced performance of this hybrid electrolyte and KVO cathode material, a zinc‐anode‐based electrochromic display prototype is shown to exhibit compelling performance. As such, this work is expected to be a significant catalyst for accelerating the development of vanadate‐based electrochromic displays.

    وصف الملف: electronic resource