يعرض 1 - 10 نتائج من 59 نتيجة بحث عن '"Ashwani Khurana"', وقت الاستعلام: 0.76s تنقيح النتائج
  1. 1
    دورية أكاديمية

    المصدر: Frontiers in Oncology, Vol 9 (2019)

    الوصف: Recurrence within 6 months of the last round of chemotherapy is clinically defined as platinum-resistant ovarian cancer. Gene expression associated with early recurrence may provide insights into platinum resistant recurrence. Prior studies identified a 14-gene model that accurately predicted early or late recurrence in 86% of patients. One of the genes identified was CC2D1A (encoding coiled-coil and C2 domain containing 1A), which showed higher expression in tumors from patients with early recurrence. Here, we show that CC2D1A protein expression was higher in cisplatin-resistant ovarian cancer cell lines compared to cisplatin-sensitive cell lines. In addition, immunohistochemical analysis of patient tumors on a tissue microarray (n = 146) showed that high levels of CC2D1A were associated with a significantly worse overall and progression-free survival (p = 0.0002 and p = 0.006, respectively). To understand the contribution of CC2D1A in chemoresistance, we generated shRNA-mediated knockdown of CC2D1A in SKOV3ip and PEO4 cell lines. Cell death and clonogenic assays of these isogenic clonal lines clearly showed that downregulation of CC2D1A resulted in increased sensitivity to cisplatin and paclitaxel in ovarian cancer cells. Moreover, nude mice bearing SKOV3ip xenografts with stably downregulated CC2D1A were more sensitive to chemotherapy as evidenced by a significantly longer survival time compared to xenografts derived from cells stably transduced with non-targeting shRNA. These results suggest CC2D1A promotes chemotherapy resistance in ovarian cancer.

    وصف الملف: electronic resource

  2. 2
    دورية أكاديمية

    المصدر: Cancers, Vol 13, Iss 9, p 2004 (2021)

    الوصف: We previously reported that the antimalarial compound quinacrine (QC) induces autophagy in ovarian cancer cells. In the current study, we uncovered that QC significantly upregulates cathepsin L (CTSL) but not cathepsin B and D levels, implicating the specific role of CTSL in promoting QC-induced autophagic flux and apoptotic cell death in OC cells. Using a Magic Red® cathepsin L activity assay and LysoTracker red, we discerned that QC-induced CTSL activation promotes lysosomal membrane permeability (LMP) resulting in the release of active CTSL into the cytosol to promote apoptotic cell death. We found that QC-induced LMP and CTSL activation promotes Bid cleavage, mitochondrial outer membrane permeabilization (MOMP), and mitochondrial cytochrome-c release. Genetic (shRNA) and pharmacological (Z-FY(tBU)-DMK) inhibition of CTSL markedly reduces QC-induced autophagy, LMP, MOMP, apoptosis, and cell death; whereas induced overexpression of CTSL in ovarian cancer cell lines has an opposite effect. Using recombinant CTSL, we identified p62/SQSTM1 as a novel substrate of CTSL, suggesting that CTSL promotes QC-induced autophagic flux. CTSL activation is specific to QC-induced autophagy since no CTSL activation is seen in ATG5 knockout cells or with the anti-malarial autophagy-inhibiting drug chloroquine. Importantly, we showed that upregulation of CTSL in QC-treated HeyA8MDR xenografts corresponds with attenuation of p62, upregulation of LC3BII, cytochrome-c, tBid, cleaved PARP, and caspase3. Taken together, the data suggest that QC-induced autophagy and CTSL upregulation promote a positive feedback loop leading to excessive autophagic flux, LMP, and MOMP to promote QC-induced cell death in ovarian cancer cells.

    وصف الملف: electronic resource

  3. 3

    الوصف: Supplementary Materials and Methods. Figure S1: Quantitative Real-time PCR. Figure S2: MCF7 cells were transfected with HIF-1α siRNA oligos and control siRNA oligos before exposing them to hypoxia (3% oxygen) for indicated time intervals. Figure S3 : MTT assay was performed on MCF10DCIS batch clones after 24 hours of treatments as indicated. Figure S4: (A and B) pcDNA3.1 or pcDNA3.1 HSulf-1-myc/His plasmid transfected MCF10DCIS. Figure S5: K means cluster analysis of HSulf-1 expression with hypoxia signature genes as described in supplementary materials and methods. Figure S6: Kaplan-Meier survival analysis was performed to evaluate HSulf-1 mRNA expression levels with disease-free and overall patient survival. Figure S7: Proposed model. Table S1: Primers used for cloning, ChIP and siRNA oligos. Table S2: Patient Characteristics. Table S3: Chi-square statistical analysis of HSulf-1 and CAIX expression. Table S4: Prognostic factors in breast cancer cases compared with disease-free survival. Table S5: Prognostic factors in breast cancer cases compared with overall survival. Table S6: Characteristics of clinical parameters of breast cancer and HSulf-1 mRNA.

  4. 4

    الوصف: HSulf-1 modulates the sulfation states of heparan sulfate proteoglycans critical for heparin binding growth factor signaling. In the present study, we show that HSulf-1 is transcriptionally deregulated under hypoxia in breast cancer cell lines. Knockdown of HIF-1α rescued HSulf-1 downregulation imposed by hypoxia, both at the RNA and protein levels. Chromatin immunoprecipitation with HIF-1α and HIF-2α antibodies confirmed recruitment of HIF-α proteins to the two functional hypoxia-responsive elements on the native HSulf-1 promoter. HSulf-1 depletion in breast cancer cells resulted in an increased and sustained bFGF2 (basic fibroblast growth factor) signaling and promoted cell migration and invasion under hypoxic conditions. In addition, FGFR2 (fibroblast growth factor receptor 2) depletion in HSulf-1–silenced breast cancer cells attenuated hypoxia-mediated cell invasion. Immunohistochemical analysis of 53 invasive ductal carcinomas and their autologous metastatic lesions revealed an inverse correlation for the expression of HSulf-1 to CAIX in both the primary tumors (P ≥ 0.0198) and metastatic lesions (P ≥ 0.0067), respectively, by χ2 test. Finally, HSulf-1 expression levels in breast tumors by RNA in situ hybridization showed that high HSulf-1 expression is associated with increased disease-free and overall survival (P ≥ 0.03 and P ≥ 0.0001, respectively). Collectively, these results reveal an important link between loss of HSulf-1 under hypoxic microenvironment and increased growth factor signaling, cell migration, and invasion. Cancer Res; 71(6); 2152–61. ©2011 AACR.

  5. 5
  6. 6
  7. 7
  8. 8
  9. 9
  10. 10