يعرض 1 - 10 نتائج من 45 نتيجة بحث عن '"Åsa Grimberg"', وقت الاستعلام: 1.38s تنقيح النتائج
  1. 1
    دورية أكاديمية

    المصدر: Frontiers in Plant Science, Vol 15 (2024)

    الوصف: Faba bean (Vicia faba L.) is a legume crop grown in diverse climates worldwide. It has a high potential for increased cultivation to meet the need for more plant-based proteins in human diets, a prerequisite for a more sustainable food production system. Characterization of diversity panels of crops can identify variation in and genetic markers for target traits of interest for plant breeding. In this work, we collected a diversity panel of 220 accessions of faba bean from around the world consisting of gene bank material and commercially available cultivars. The aims of this study were to quantify the phenotypic diversity in target traits to analyze the impact of breeding on these traits, and to identify genetic markers associated with traits through a genome-wide association study (GWAS). Characterization under field conditions at Nordic latitude across two years revealed a large genotypic variation and high broad-sense heritability for eleven agronomic and seed quality traits. Pairwise correlations showed that seed yield was positively correlated to plant height, number of seeds per plant, and days to maturity. Further, susceptibility to bean weevil damage was significantly higher for early flowering accessions and accessions with larger seeds. In this study, no yield penalty was found for higher seed protein content, but protein content was negatively correlated to starch content. Our results showed that while breeding advances in faba bean germplasm have resulted in increased yields and number of seeds per plant, they have also led to a selection pressure towards delayed onset of flowering and maturity. DArTseq genotyping identified 6,606 single nucleotide polymorphisms (SNPs) by alignment to the faba bean reference genome. These SNPs were used in a GWAS, revealing 51 novel SNP markers significantly associated with ten of the assessed traits. Three markers for days to flowering were found in predicted genes encoding proteins for which homologs in other plant species regulate flowering. Altogether, this work enriches the growing pool of phenotypic and genotypic data on faba bean as a valuable resource for developing efficient breeding strategies to expand crop cultivation.

    وصف الملف: electronic resource

  2. 2
    دورية أكاديمية

    المصدر: Frontiers in Plant Science, Vol 15 (2024)

    الوصف: Faba bean (Vicia faba) is a legume grown in diverse climate zones with a high potential for increased cultivation and use in food due to its nutritional seeds. In this study, we characterized seed tissue development in faba bean to identify key developmental processes; from embryo expansion at the expense of the endosperm to the maturing storage stages of the bean seed. A spatio-temporal transcriptome profiling analysis, combined with chemical nutrient analysis of protein, starch, and lipid, of endosperm and embryo tissues at different developmental stages, revealed gene expression patterns, transcriptional networks, and biochemical pathways in faba bean. We identified key players in the LAFL (LEC1, ABI3, FUS3, and LEC2) transcription factor network as well as their major repressors VAL1 and ASIL1. Our results showed that proteins accumulated not only in the embryo but also in the endosperm. Starch accumulated throughout seed development and oil content increased during seed development but at very low levels. The patterns of differentially expressed transcripts encoding proteins with functions in the corresponding metabolic pathways for the synthesis of these storage compounds, to a high extent, aligned with these findings. However, the early expression of transcripts encoding WRI1 combined with the late expression of oil body proteins indicated a not manifested high potential for lipid biosynthesis and oil storage. Altogether, this study contributes to increased knowledge regarding seed developmental processes applicable to future breeding methods and seed quality improvement for faba bean.

    وصف الملف: electronic resource

  3. 3
    دورية أكاديمية

    المصدر: Frontiers in Plant Science, Vol 13 (2022)

    الوصف: Quinoa (Chenopodium quinoa Willd.) is a crop that has great potential for increased cultivation in diverse climate regions. The seed protein quality obtained from this crop is high concerning the requirements to meet human nutritional needs, but the seed protein content is relatively low if compared to crops such as grain legumes. Increased seed protein content is desirable for increasing the economic viability of this crop in order for it to be used as a protein crop. In this study, we characterized three genotypes of quinoa with different levels of seed protein content. By performing RNA sequencing of developing seeds, we determined the genotype differences in gene expression and identified genetic polymorphisms that could be associated with increased protein content. Storage nutrient analyses of seeds of three quinoa genotypes (Titicaca, Pasankalla, and Regalona) from different ecoregions grown under controlled climate conditions showed that Pasankalla had the highest protein content (20%) and the lowest starch content (46%). Our seed transcriptome analyses revealed highly differentially expressed transcripts (DETs) in Pasankalla as compared to the other genotypes. These DETs encoded functions in sugar transport, starch and protein synthesis, genes regulating embryo size, and seed transcription factors. We selected 60 genes that encode functions in the central carbon metabolism and transcription factors as potential targets for the development of high-precision markers. Genetic polymorphisms, such as single nucleotide polymorphisms (SNPs) and base insertions and deletions (InDels), were found in 19 of the 60 selected genes, which can be further evaluated for the development of genetic markers for high seed protein content in quinoa. Increased cultivation of quinoa can contribute to a more diversified agriculture and support the plant protein diet shift. The identification of quinoa genotypes with contrasting seed quality can help establish a model system that can be used for the identification of precise breeding targets to improve the seed quality of quinoa. The data presented in this study based on nutrient and transcriptome analyses contribute to an enhanced understanding of the genetic regulation of seed quality traits in quinoa and suggest high-precision candidate markers for such traits.

    وصف الملف: electronic resource

  4. 4
    دورية أكاديمية

    المصدر: BMC Plant Biology, Vol 20, Iss 1, Pp 1-16 (2020)

    الوصف: Abstract Background Cereal grains, including wheat (Triticum aestivum L.), are major sources of food and feed, with wheat being dominant in temperate zones. These end uses exploit the storage reserves in the starchy endosperm of the grain, with starch being the major storage component in most cereal species. However, oats (Avena sativa L.) differs in that the starchy endosperm stores significant amounts of oil. Understanding the control of carbon allocation between groups of storage compounds, such as starch and oil, is therefore important for understanding the composition and hence end use quality of cereals. WRINKLED1 is a transcription factor known to induce triacylglycerol (TAG; oil) accumulation in several plant storage tissues. Results An oat endosperm homolog of WRI1 (AsWRI1) expressed from the endosperm-specific HMW1Dx5 promoter resulted in drastic changes in carbon allocation in wheat grains, with reduced seed weight and a wrinkled seed phenotype. The starch content of mature grain endosperms of AsWRI1-wheat was reduced compared to controls (from 62 to 22% by dry weight (dw)), TAG was increased by up to nine-fold (from 0.7 to 6.4% oil by dw) and sucrose from 1.5 to 10% by dw. Expression of AsWRI1 in wheat grains also resulted in multiple layers of elongated peripheral aleurone cells. RNA-sequencing, lipid analyses, and pulse-chase experiments using 14C-sucrose indicated that futile cycling of fatty acids could be a limitation for oil accumulation. Conclusions Our data show that expression of oat endosperm WRI1 in the wheat endosperm results in changes in metabolism which could underpin the application of biotechnology to manipulate grain composition. In particular, the striking effect on starch synthesis in the wheat endosperm indicates that an important indirect role of WRI1 is to divert carbon allocation away from starch biosynthesis in plant storage tissues that accumulate oil.

    وصف الملف: electronic resource

  5. 5
    دورية أكاديمية

    المصدر: Plants, Vol 11, Iss 7, p 889 (2022)

    الوصف: Wheat (Triticum aestivum L.) is one of the major staple crops in the world and is used to prepare a range of foods. The development of new varieties with wider variation in grain composition could broaden their use. We characterized grains and flours from oil-accumulating transgenic wheat expressing the oat (Avena sativa L.) endosperm WRINKLED1 (AsWRI1) grown under field conditions. Lipid and starch accumulation was determined in developing caryopses of AsWRI1-wheat and X-ray microtomography was used to study grain morphology. The developing caryopses of AsWRI1-wheat grains had increased triacylglycerol content and decreased starch content compared to the control. Mature AsWRI1-wheat grains also had reduced weight, were wrinkled and had a shrunken endosperm and X-ray tomography revealed that the proportion of endosperm was decreased while that of the aleurone was increased. Grains were milled to produce two white flours and one bran fraction. Mineral and lipid analyses showed that the flour fractions from the AsWRI1-wheat were contaminated with bran, due to the effects of the changed morphology on milling. This study gives a detailed analysis of grains from field grown transgenic wheat that expresses a gene that plays a central regulatory role in carbon allocation and significantly affects grain composition.

    وصف الملف: electronic resource

  6. 6
    دورية أكاديمية

    المصدر: Frontiers in Plant Science, Vol 10 (2019)

    الوصف: High accumulation of storage compounds such as oil and starch are economically important traits of most agricultural crops. The genetic network determining storage compounds composition in crops has been the target of many biotechnological endeavors. Especially WRINKLED1 (WRI1), a well-known key transcription factor involved in the allocation of carbon into oil, has attracted much interest. Here we investigate the presence of an autoregulatory system involving WRI1 through transient expression in Nicotiana benthamiana leaves. Different lengths of the Arabidopsis WRI1 promotor region were coupled to a GUS reporter gene and the activity was measured when combined with constitutive expression of different WRI1 homologs from Arabidopsis thaliana, oat (Avena sativa L.), yellow nutsedge (Cyperus esculentus L.), and potato (Solanum tuberosum L.). We could show that increasing levels of each WRI1 homolog reduced the transcriptional activity of the Arabidopsis WRI1 upstream region. Through structural analysis and domain swapping between oat and Arabidopsis WRI1, we were able to determine that the negative autoregulation was clearly dependent on the DNA-binding AP2-domains. A DNA/protein interaction assay showed that AtWRI1 is unable to bind to its corresponding upstream region indicating non-direct interaction in vivo. Taken together, our results demonstrate a negative feedback loop of WRI1 expression and that it is an indirect interaction most likely caused by downstream targets of WRI1. We also show that it is possible to release WRI1 expression from this autoregulation by creating semi-synthetic WRI1 homologs increasing the potential use of WRI1 in biotechnological applications.

    وصف الملف: electronic resource

  7. 7
    مؤتمر

    الوصف: Faba bean (Vicia faba) is a legume grown in diverse climate zones with a high potential for increased cultivation and use in food due to its nutritional seeds. In this study, we characterized seed tissue development in faba bean to identify key developmental processes; from embryo expansion at the expense of the endosperm to the maturing storage stages of the bean seed. A spatio-temporal transcriptome profiling analysis, combined with chemical nutrient analysis of protein, starch, and lipid, of endosperm and embryo tissues at different developmental stages, revealed gene expression patterns, transcriptional networks, and biochemical pathways in faba bean. We identified key players in the LAFL (LEC1, ABI3, FUS3, and LEC2) transcription factor network as well as their major repressors VAL1 and ASIL1. Our results showed that proteins accumulated not only in the embryo but also in the endosperm. Starch accumulated throughout seed development and oil content increased during seed development but at very low levels. The patterns of differentially expressed transcripts encoding proteins with functions in the corresponding metabolic pathways for the synthesis of these storage compounds, to a high extent, aligned with these findings. However, the early expression of transcripts encoding WRI1 combined with the late expression of oil body proteins indicated a not manifested high potential for lipid biosynthesis and oil storage. Altogether, this study contributes to increased knowledge regarding seed developmental processes applicable to future breeding methods and seed quality improvement for faba bean.

  8. 8
    دورية أكاديمية

    الوصف: Quinoa (Chenopodium quinoa Willd.) is a crop that has great potential for increased cultivation in diverse climate regions. The seed protein quality obtained from this crop is high concerning the requirements to meet human nutritional needs, but the seed protein content is relatively low if compared to crops such as grain legumes. Increased seed protein content is desirable for increasing the economic viability of this crop in order for it to be used as a protein crop. In this study, we characterized three genotypes of quinoa with different levels of seed protein content. By performing RNA sequencing of developing seeds, we determined the genotype differences in gene expression and identified genetic polymorphisms that could be associated with increased protein content. Storage nutrient analyses of seeds of three quinoa genotypes (Titicaca, Pasankalla, and Regalona) from different ecoregions grown under controlled climate conditions showed that Pasankalla had the highest protein content (20%) and the lowest ... : الكينوا (Chenopodium quinoa Willd.) هو محصول لديه إمكانات كبيرة لزيادة الزراعة في مناطق مناخية متنوعة. جودة بروتين البذور التي تم الحصول عليها من هذا المحصول عالية فيما يتعلق بمتطلبات تلبية الاحتياجات الغذائية البشرية، ولكن محتوى بروتين البذور منخفض نسبيًا مقارنة بالمحاصيل مثل بقول الحبوب. زيادة محتوى بروتين البذور أمر مرغوب فيه لزيادة الجدوى الاقتصادية لهذا المحصول من أجل استخدامه كمحصول بروتيني. في هذه الدراسة، وصفنا ثلاثة أنماط وراثية من الكينوا بمستويات مختلفة من محتوى بروتين البذور. من خلال إجراء تسلسل الحمض النووي الريبي للبذور النامية، حددنا اختلافات النمط الجيني في التعبير الجيني وحددنا الأشكال الجينية المتعددة التي يمكن أن ترتبط بزيادة محتوى البروتين. أظهرت تحليلات المغذيات المخزنة لبذور ثلاثة أنماط جينية للكينوا (تيتيكاكا وباسانكالا وريجالونا) من مناطق بيئية مختلفة تزرع في ظل ظروف مناخية خاضعة للرقابة أن باسانكالا لديها أعلى محتوى من البروتين (20 ٪) وأقل محتوى من النشا (46 ٪). كشفت تحليلاتنا لنسخة البذور عن نصوص معبر عنها بشكل متباين للغاية (DETs) في باسانكالا مقارنة بالأنماط الجينية الأخرى. ترميز ...

  9. 9

    الوصف: Faba bean (Vicia faba L.) is a legume crop grown in diverse climates worldwide. It has a high potential for increased cultivation to meet the need for more plant-based proteins in human diets, a prerequisite for a more sustainable food production system. Characterization of diversity panels of crops can identify variation in and genetic markers for target traits of interest for plant breeding. In this work, we collected a diversity panel of 220 accessions of faba bean from around the world consisting of gene bank material and commercially available cultivars. The aims of this study were to quantify the phenotypic diversity in target traits to analyze the impact of breeding on these traits, and to identify genetic markers associated with traits through a genome-wide association study (GWAS). Characterization under field conditions at Nordic latitude across two years revealed a large genotypic variation and high broad-sense heritability for eleven agronomic and seed quality traits. Pairwise correlations showed that seed yield was positively correlated to plant height, number of seeds per plant, and days to maturity. Further, susceptibility to bean weevil damage was significantly higher for early flowering accessions and accessions with larger seeds. In this study, no yield penalty was found for higher seed protein content, but protein content was negatively correlated to starch content. Our results showed that while breeding advances in faba bean germplasm have resulted in increased yields and number of seeds per plant, they have also led to a selection pressure towards delayed onset of flowering and maturity. DArTseq genotyping identified 6,606 single nucleotide polymorphisms (SNPs) by alignment to the faba bean reference genome. These SNPs were used in a GWAS, revealing 51 novel SNP markers significantly associated with ten of the assessed traits. Three markers for days to flowering were found in predicted genes encoding proteins for which homologs in other plant species regulate flowering. Altogether, this work ...

  10. 10

    الوصف: Faba bean (Vicia faba) is a legume grown in diverse climate zones with a high potential for increased cultivation and use in food due to its nutritional seeds. In this study, we characterized seed tissue development in faba bean to identify key developmental processes; from embryo expansion at the expense of the endosperm to the maturing storage stages of the bean seed. A spatio-temporal transcriptome profiling analysis, combined with chemical nutrient analysis of protein, starch, and lipid, of endosperm and embryo tissues at different developmental stages, revealed gene expression patterns, transcriptional networks, and biochemical pathways in faba bean. We identified key players in the LAFL (LEC1, ABI3, FUS3, and LEC2) transcription factor network as well as their major repressors VAL1 and ASIL1. Our results showed that proteins accumulated not only in the embryo but also in the endosperm. Starch accumulated throughout seed development and oil content increased during seed development but at very low levels. The patterns of differentially expressed transcripts encoding proteins with functions in the corresponding metabolic pathways for the synthesis of these storage compounds, to a high extent, aligned with these findings. However, the early expression of transcripts encoding WRI1 combined with the late expression of oil body proteins indicated a not manifested high potential for lipid biosynthesis and oil storage. Altogether, this study contributes to increased knowledge regarding seed developmental processes applicable to future breeding methods and seed quality improvement for faba bean.