دورية أكاديمية

A NOVEL COMPOSITE SCAFFOLD FOR CARDIAC TISSUE ENGINEERING

التفاصيل البيبلوغرافية
العنوان: A NOVEL COMPOSITE SCAFFOLD FOR CARDIAC TISSUE ENGINEERING
المؤلفون: HYOUNGSHIN PARK, MILICA RADISIC, JEONG OK LIM, BONG HYUN CHANG, GORDANA VUNJAK-NOVAKOVIC
المساهمون: HYOUNGSHIN PARK, MILICA RADISIC, JEONG OK LIM, BONG HYUN CHANG, GORDANA VUNJAK-NOVAKOVIC
المصدر: https://doi.org/10.1290/0411071.1Test.
بيانات النشر: Society for In Vitro Biology
سنة النشر: 2005
المجموعة: BioOne Online Journals
جغرافية الموضوع: world
الوصف: One approach to the engineering of functional cardiac tissue for basic studies and potential clinical use involves bioreactor cultivation of dissociated cells on a biomaterial scaffold. Our objective was to develop a scaffold that is (1) highly porous with large interconnected pores (to facilitate mass transport), (2) hydrophilic (to enhance cell attachment), (3) structurally stable (to withstand the shearing forces during bioreactor cultivation), (4) degradable (to provide ultimate biocompatibility of the tissue graft), and (5) elastic (to enable transmission of contractile forces). The scaffold of choice was made as a composite of poly(dl-lactide-co-caprolactone), poly(dl-lactide-co-glycolide) (PLGA), and type I collagen, with open interconnected pores and the average void volume of 80 ± 5%. Neonatal rat heart cells suspended in Matrigel were seeded into the scaffold at a physiologically high density (1.35 × 108 cells/cm3) and cultivated for 8 d in cartridges perfused with culture medium or in orbitally mixed dishes (25 rpm); collagen sponge (Ultrafoam™) and PLGA sponge served as controls. Construct cellularity, presence of cardiac markers, and contractile properties were markedly improved in composite scaffolds as compared with both controls.
نوع الوثيقة: text
وصف الملف: text/HTML
اللغة: English
DOI: 10.1290/0411071.1
الإتاحة: https://doi.org/10.1290/0411071.1Test
حقوق: All rights reserved.
رقم الانضمام: edsbas.643E4309
قاعدة البيانات: BASE