دورية أكاديمية

Correlación energética entre la radiación solar global y la velocidad del viento en el caribe colombiano ; Energy correlation between global solar radiation and wind speed in the colombian caribbean

التفاصيل البيبلوغرافية
العنوان: Correlación energética entre la radiación solar global y la velocidad del viento en el caribe colombiano ; Energy correlation between global solar radiation and wind speed in the colombian caribbean
المؤلفون: Bonilla Prado, Guillermo Antonio, Ruiz-Mendoza, Belizza J., Salazar Gil, Luisa Julia
المصدر: https://revistascientificas.cuc.edu.co/ingecuc/article/view/3386Test.
بيانات النشر: Corporación Universidad de la Costa
Colombia
سنة النشر: 2021
المجموعة: REDICUC - Repositorio Universidad de La Costa
مصطلحات موضوعية: Renewable energy sources, Solar energy, Wind power, Energy correlation, Diversification, Fuentes de energía renovable, Energía solar, Energía eólica, Correlación energética, Diversificación
جغرافية الموضوع: Colombia, Región Caribe
الوصف: Introduction— Nearly 69.18% of Colombian electric matrix (2018) depends on hydraulic resources, which make it vulnerable to rainfall shortage periods, impacting on high energy prices and increasing greenhouse gas emissions due to incorporation of fossil fuel, since these sources contribute with 26.36% to the energy matrix. This led to take actions to expand the participation of Non-Conventional Renewable Energy Sources (NCRES), based on the potential of the different regions where energy sources such as wind, solar and biomass stand out. For large-scale energy production, wind energy and solar energy have great potential in the Caribbean Region; thus, this work intends to assess the wind and solar resources of this region to identify and establish reverse correlation behaviors between them, in order to guarantee that the participation of these energies will maintain the sustainability of the energy matrix by incorporating these energy sources. Objective— Apply a statistical methodology that allow to assess the degree of correlation between the wind and solar resources present in the Caribbean Region, in a time horizon of 5 years (2014-2018). Methodology— Based on data (2014 - 2018) of global solar radiation and wind speed measured on the ground by means of the Automatic Satellite Meteorological Stations (EMAS) from the network of meteorological stations of the Institute of Hydrology, Meteorology and Environmental Studies (IDEAM in spanish), a characterization is carried out through a descriptive analysis in order to obtain a representative value of each variable, the daily and monthly averages of the time series are calculated to evaluate the correlation of each resource separately as joint correlation, using a statistical method based on the calculation of Pearson’s correlation coefficients. Results— The determined time series allow us to understand that the complementarity of the resources separately, such as by combining them, presents a greater number of correlation coefficients close to -1, when the ...
نوع الوثيقة: article in journal/newspaper
وصف الملف: 29 páginas; application/pdf
اللغة: English
تدمد: 0122-6517
2382-4700
العلاقة: INGE CUC; [1] Y. Castillo, M. Castrillón Gutiérrez, M. Vanegas-Chamorro, G. Valencia & E. Villicaña, “Rol de las Fuentes No Convencionales de Energía en el sector eléctrico colombiano,” Prospect, vol. 13 no. 1, pp. 39–51, 2015. Disponible en http://repositorio.uac.edu.co/handle/11619/1852Test; [2] UNEP, Find out more about COP21, Sustainable Innovation Forum, 2015. Available: http://www.cop21paris.org/about/cop21Test; [3] C. García Arbeláez, X. Barrera, R. Gómez, & R. Suárez Castaño, “El ABC de los compromisos de Colombia para la COP21,” presentado al WWF-Colombia, COP 21, BO, CO, pp. 1–32, 2015. Recuperado de https://www.minambiente.gov.co/images/cambioclimatico/pdf/colombia_hacia_la_COP21/ABC_de_Test los_Compromisos_de_Colombia_para_la_COP21_VF.pdf; [4] L. S. Hoyos, “Impacto de la Ley 1715 de mayo 13 de 2014 sobre el sector eléctrico colombiano: análisis de los nuevos actores del mercado,” Master thesis, UNAL, BO, CO, 2016. Recuperado de https://repositorio.unal.edu.co/bitstream/handle/unal/57667/1081594025.2016.pdf?sequence=1&isAllowed=yTest; [5] UPME, Informe mensual de variables de generación y del mercado eléctrico colombiano, BO, CO: Minminas, 2018.; [6] F. Ballenilla García de Gamarra, “La sostenibilidad desde la perspectiva del agotamiento de los combustibles fósiles, un problema socio-ambiental relevante,” Rev Investig Esc, vol. 55, pp. 73–87, 2005. Disponible en http://hdl.handle.net/11441/61154Test; [7] D. Corte, F. Sierra & G. Valencia, “Validación del modelo matemático ‘Función de densidad de probabilidad (pdf) de Weibull’, evaluando el recurso eólico en la zona del caribe colombiano: caso estudio,” Prospect, vol. 13, no. 2, pp. 38–, Dec. 2015. https://doi.org/10.15665/rp.v13i2.485Test; [8] UPME, Plan de expansion de referencia generación - transmisión 2014 - 2028. BO, CO: Minminas, 2013. Recuperado de https://bdigital.upme.gov.co/bitstream/001/1030/24/24.%20PLAN%20DE%20Test EXPANSION%20%202014%20-%202028.pdf; [9] UPME, Plan energético nacional 2020 - 2050, BO, CO: Minminas, 2019. Recuperado de http:// www1.upme.gov.co/DemandayEficiencia/Documents/PEN_2020_2050/Plan_Energetico_Nacional_2020_2050.pdf; [10] UPME and IDEAM, Atlas de Radiación Solar de Colombia. BO, CO: Minminas, 2005. Recuperado de http://www.upme.gov.co/Docs/Atlas_Radiacion_Solar/0-Primera_Parte.pdfTest; [11] A. A. Radomes & S. Arango, “Renewable energy technology diffusion: an analysis of photovoltaicsystem support schemes in Medellín, Colombia,” J Clean Prod, vol. 92, pp. 152–161, Apr. 2015. https:// doi.org/10.1016/j.jclepro.2014.12.090; [12] Z. Qin, W. Li & X. Xiong, “Estimating wind speed probability distribution using kernel density method,” Electr Pow Syt Res, vol. 81, no. 12, pp. 2139–2146, Dec. 2011. https://doi.org/10.1016/j.epsr.2011.08.009Test; [13] UPME, “Día histórico para las energías renovables en colombia: por primera vez, la energía del sol y del viento llegará, a precios más bajos, a los hogares colombianos,” Comunicado de prensa 05, BO, CO: Minminas, Oct. 2019. Recuperado de https://www1.upme.gov.co/SalaPrensa/ComunicadosPrensa/Comunicado_05_2019.pdfTest; [14] UPME, Informe de registro de proyectos de generación de electricidad. BO, CO: Minminas, 2020. Disponible en https://www1.upme.gov.co/Paginas/Registro.aspxTest; [15] F. Henao, J. P. Viteri, Y. Rodríguez, J. Gómez & I. Dyner, “Annual and interannual complementarities of renewable energy sources in Colombia,” Renew Sustain Energy Rev, vol. 134, Dec. 2020. https:// doi.org/10.1016/j.rser.2020.110318; [16] J. Widen, “Correlations Between Large-Scale Solar and Wind Power in a Future Scenario for Sweden,” IEEE Trans Sustain Energy, vol. 2, no. 2, pp. 177–184, Apr. 2011. https://doi.org/10.1109Test/ TSTE.2010.2101620; [17] C. E. Hoicka &I. H. Rowlands, “Solar and wind resource complementarity: Advancing options for renewable electricity integration in Ontario, Canada,” Renew Energy, vol. 36, no. 1, pp. 97–107, Jan., 2011. https://doi.org/10.1016/j.renene.2010.06.004Test; [18] F. Monforti, T. Huld, K. Bódis, L. Vitali, M. D’Isidoro & R. Lacal-Arántegui, “Assessing complementarity of wind and solar resources for energy production in Italy. A Monte Carlo approach,” Renew Energy, vol. 63, pp. 576–586, Mar. 2014. https://doi.org/10.1016/j.renene.2013.10.028Test; [19] M. R. Shaner, S. J. Davis, N. S. Lewis & K. Caldeira, “Geophysical constraints on the reliability of solar and wind power in the United States,” Energy Environ Sci, no. 4, pp. 914–925, 2018. https://doiTest. org/10.1039/C7EE03029K; [20] J. Widén, N. Carpman, V. Castellucci, D. Lingfors, J. Olauson, F. Remouit, M. Bergkvist, M. Grabbe & R. Waters, “Variability assessment and forecasting of renewables: A review for solar, wind, wave and tidal resources,” Renew Sustain Energy Rev, vol. 44, pp. 356–375, Apr. 2015. https://doi.org/10.1016/jTest. rser.2014.12.019; [21] C. de Oliveira Costa Souza Rosa, E. da Silva Christo, K. A. Costa & L. dos Santos, “Assessing complementarity and optimising the combination of intermittent renewable energy sources using ground measurements,” J Clean Prod, vol. 258, Jun. 2020. https://doi.org/10.1016/j.jclepro.2020.120946Test; [22] J. Jurasz, A. Beluco & F. A. Canales, “The impact of complementarity on power supply reliability of small scale hybrid energy systems,” Energy, vol. 161, pp. 737–743, Oct. 2018. https://doi.org/10.1016/jTest. energy.2018.07.182; [23] C. Viviescas, L. Lima, F. A. Diuana, E. Vasquez, C. Ludovique, G. N. Silva, V. Huback, L. Magalar, A. Szklo, A. F. P. Lucena, R. Schaeffer & J. R. Paredes, “Contribution of Variable Renewable Energy to increase energy security in Latin America: Complementarity and climate change impacts on wind and solar resources,” Renew Sustain Energy Rev, vol. 113, pp. 9232–, Oct. 2019. https://doi.org/10.1016/jTest. rser.2019.06.039; [24] A. R. Silva, F. M. Pimenta, A. T. Assireu & M. H. C. Spyrides, “Complementarity of Brazil´s hydro and offshore wind power,” Renew Sustain Energy Rev, vol. 56, pp. 413–427, Apr. 2016. https://doiTest. org/10.1016/j.rser.2015.11.045; [25] A. Beluco, P. K. de Souza & A. Krenzinger, “A dimensionless index evaluating the time complementarity between solar and hydraulic energies,” Renew Energy, vol. 33, no. 10, pp. 2157–2165, Oct. 2008. https://doi.org/10.1016/j.renene.2008.01.019Test; [26] C. de Oliveira Costa Souza Rosa, K. Costa, E. da Silva Christo & P. Braga Bertahone, “Complementarity of hydro, photovoltaic, and wind power in rio de janeiro state,” Sustainability, vol. 9, no. 7, pp. 1130–, Jun. 2017. https://doi.org/10.3390/su9071130Test; [27] IDEAM, ULibertdores & UPME, Atlas de radiación solar, ultravioleta y ozono de Colombia. BO, CO: MinAmbiente, 2017. Disponible en http://www.ideam.gov.co/web/tiempo-y-clima/radiacionTest; [28] IDEAM, Solicitud de Información. BO, CO: IDEAM, Mar. 2019. Available: http://www.ideam.gov.coTest/ solicitud-de-informacion; [29] P. L. Franco and M. & E. A. I. de Hidrologia, El Medio Ambiente en Colombia. BO, CO: IDEAM, 1998.; [30] P. E. Bett & H. E. Thornton, “The climatological relationships between wind and solar energy supply in Britain,” Renew Energy, vol. 87, part 1, pp. 96–110, Mar. 2016. https://doi.org/10.1016/j.renene.2015.10.006Test; [31] IDEAM, Boletín de monitorio fenomeno el niño y la niña 2014. BO, CO: IDEAM, 2014.; [32] NOAA, “Cold & Warm Episodes by Season,” National Weather Service - Climate Prediction Center, Available: https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.phpTest; [33] IDEAM, Boletín de monitoreo fenomeno el niño y la niña 2015. BO, CO: IDEAM, 2015. Disponible en http://www.ideam.gov.co/web/tiempo-y-clima/boletin-de-seguimiento-fenomeno-el-nino-y-la-ninaTest/-/ document_library_display/I6NwA8DioHgN/view/93551512; [34] IDEAM, Boletin de monitoreo fenomeno el niño y la niña 2016. BO, CO: IDEAM, 2016. Disponible en http://www.ideam.gov.co/web/tiempo-y-clima/boletin-de-seguimiento-fenomeno-el-nino-y-la-ninaTest/-/ document_library_display/I6NwA8DioHgN/view/93551515; [35] IDEAM, Boletin de monitoreo fenomeno el niño y la niña 2017. BO, CO: IDEAM, 2017. Disponible en http://www.ideam.gov.co/web/tiempo-y-clima/boletin-de-seguimiento-fenomeno-el-nino-y-la-ninaTest/-/ document_library_display/I6NwA8DioHgN/view/93551518; [36] IDEAM, Boletin de monitoreo fenomeno el niño y la niña 2018. BO, CO: IDEAM, 2018. Disponible en http://www.ideam.gov.co/web/tiempo-y-clima/boletin-de-seguimiento-fenomeno-el-nino-y-la-ninaTest/-/ document_library_display/I6NwA8DioHgN/view/93551521; [37] IDEAM / UPME, Atlas de Viento de Colombia. BO, CO: MinAmbiente, 2017.; [38] WMO, Guide to Meteorological Instruments and Methods of Observation. GE, CH: WMO, 2014.; [39] S. T.F, D. Qin, G. K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauel, Y. Xia, V. Bex & P. M. Midgley, Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovern-mental Panel on Climate ChangeWG1AR5. NO: WMO/ UNEP, 2013. Available from https://www.ipcc.ch/site/assets/uploads/2018/03/WG1AR5_SummaryVolume_FINAL.pdfTest; [40] J. C. Ortiz Royero, “Exposure of the Colombian Caribbean coast, including San Andrés Island, to tropical storms and hurricanes, 1900–2010,” Nat Hazards, vol. 61, no. 2, pp. 815–827, Mar. 2012. https:// doi.org/10.1007/s11069-011-0069-1; [41] M. Cappucci, Hurricanes Eta and Iota brought disaster to Central America. Officials can’t retire their names, The Washington Post, Nov. 17, 2020. Available: https://www.washingtonpost.com/weather/2020/11/17/greek-letter-hurricane-names-retireTest/; [42] El Tiempo, En vivo: así avanza emergencia en San Andrés y Providencia por huracán, El Tiempo, Nov. 2020. Disponible en https://www.eltiempo.com/colombia/otras-ciudades/huracan-iota-en-san-andresy-providencia-noticias-de-ultimo-minuto-en-vivo-549241Test; [43] N. Hoyos, A. Correa-Metrio, A. Sisa, M. A. Ramos-Fabiel, J. M. Espinosa, J. C. Restrepo & J. Escobar, “The environmental envelope of fires in the Colombian Caribbean,” Appl Geogr, vol. 84, pp. 42–54, Jul. 2017. https://doi.org/10.1016/j.apgeog.2017.05.001Test; [44] G. Poveda & O. J. Mesa, “On the existence of Lloró (the rainiest locality on Earth): Enhanced oceanland-atmosphere interaction by a low-level jet,” Geophys Res Lett, vol. 27, no. 11, pp. 1675–1678, Jun. 2000. https://doi.org/10.1029/1999GL006091Test; [45] G. Poveda, P. R. Waylen & R. S. Pulwarty, “Annual and inter-annual variability of the present climate in northern South America and southern Mesoamerica,” Palaeogeogr Palaeoclimatol Palaeoecol, vol. 234, no. 1, pp. 3–27, May. 2006. https://doi.org/10.1016/j.palaeo.2005.10.031Test; [46] IDEAM, Anuario climatológico 2016. BO, CO: IDEAM, 2016. Disponible en http://www.ideam.gov.coTest/ web/tiempo-y-clima/climatologico-mensual/-/document_library_display/xYvlPc4uxk1Y/view/565224; [47] Ascario Pérez, Juan C. Ortiz, Luis F. Bejarano, Luis Otero, Juan C. Restrepo & Andrés Franco, “Sea breeze in the Colombian Caribbean coast,” Atmósfera,vol. 31, no. 4, pp. 389–406, Oct. 2018. https://doiTest. org/10.20937/atm.2018.31.04.06; [48] G. Poveda, “La hidroclimatología de Colombia: una sintesís desde la escala inter-decadal hasta la escala diurna,” Rev Acad Colomb Ci Exact, Fis Nat, vol. 28, no. 107, pp. 201–222, 2004. Disponible en https://biblat.unam.mx/es/revista/revista-de-la-academia-colombiana-de-ciencias-exactas-fisicas-ynaturales/articulo/la-hidroclimatologia-de-colombia-una-sintesis-desde-la-escala-inter-decadal-hastala-escala-diurnaTest; [49] IDEAM, Anuario climatológico 2014. BO, CO: IDEAM, Feb. 2015. Disponible en http://wwwTest. ideam.gov.co/web/tiempo-y-clima/climatologico-mensual/-/document_library_display/xYvlPc4uxk1Y/view/299805?_110_INSTANCE_xYvlPc4uxk1Y_redirect=http%3A%2F%2Fwww.ideam. gov.co%2Fweb%2Ftiempo-y-clima%2Fclimatologico-mensual%3Fp_p_id%3D110_INSTANCE_ xYvlPc4uxk1Y%26p_p_lifecycle%3D0%26p_p_state%3Dnormal%26p_p_mode%3Dview%26p_p_col_ id%3Dcolumn-1%26p_p_col_count%3D2; [50] IDEAM, Anuario climatológico 2015. BO, CO: IDEAM, Feb. 2016. Disponible en http://www.ideam.govTest. co/web/tiempo-y-clima/climatologico-mensual/-/document_library_display/xYvlPc4uxk1Y/view/299660; [51] IDEAM, Boletín climatológico 2017. BO, CO: IDEAM, 2017. Disponible en http://www.ideam.gov.coTest/ web/tiempo-y-clima/climatologico-mensual; [52] IDEAM, Anuario climatológico 2018. BO, CO: IDEAM, 2018. Disponible en http://www.ideam.gov.coTest/ web/tiempo-y-clima/climatologico-mensual/-/document_library_display/xYvlPc4uxk1Y/view/71473013; 284; 256; 17; G. Bonilla Prado, B. Ruíz Mendoza & J. Salazar Gil, “ Energy correlation between global solar radiation and wind speed in the Colombian Caribbean”, INGECUC, vol. 17. no. 1, pp. 256–284. DOI: http://doi.org/10.17981/ingecuc.17.1.2021.20Test; https://hdl.handle.net/11323/10312Test; Corporación Universidad de la Costa; REDICUC - Repositorio CUC; https://repositorio.cuc.edu.coTest/
DOI: 10.17981/ingecuc.17.1.2021.20
الإتاحة: https://doi.org/10.17981/ingecuc.17.1.2021.20Test
https://doi.org/10.1007/s11069-011-0069-1Test
https://hdl.handle.net/11323/10312Test
https://repositorio.cuc.edu.coTest/
حقوق: Derechos de autor 2021 INGE CUC ; Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) ; https://creativecommons.org/licenses/by-nc-nd/4.0Test/ ; info:eu-repo/semantics/openAccess ; http://purl.org/coar/access_right/c_abf2Test
رقم الانضمام: edsbas.5126FBBC
قاعدة البيانات: BASE
الوصف
تدمد:01226517
23824700
DOI:10.17981/ingecuc.17.1.2021.20