دورية أكاديمية

A robust method to derive functional neural crest cells from human pluripotent stem cells.

التفاصيل البيبلوغرافية
العنوان: A robust method to derive functional neural crest cells from human pluripotent stem cells.
المؤلفون: Kreitzer, Faith R, Salomonis, Nathan, Sheehan, Alice, Huang, Miller, Park, Jason S, Spindler, Matthew J, Lizarraga, Paweena, Weiss, William A, So, Po-Lin, Conklin, Bruce R
المصدر: American Journal of Stem Cells, vol 2, iss 2
بيانات النشر: eScholarship, University of California
سنة النشر: 2013
المجموعة: University of California: eScholarship
مصطلحات موضوعية: Pediatric Research Initiative, Stem Cell Research - Embryonic - Human, Stem Cell Research, Stem Cell Research - Nonembryonic - Human, Pediatric, Neurosciences, Regenerative Medicine, 1.1 Normal biological development and functioning, Underpinning research, Generic health relevance, Neural crest, induced pluripotent stem cells, human, SMAD inhibition, differentiation, migration
جغرافية الموضوع: 119 - 131
الوصف: Neural crest (NC) cells contribute to the development of many complex tissues of all three germ layers during embryogenesis, and its abnormal development accounts for several congenital birth defects. Generating NC cells-including specific subpopulations such as cranial, cardiac, and trunk NC cells-from human pluripotent stem cells will provide a valuable model system to study human development and disease. Here, we describe a rapid and robust NC differentiation method called "LSB-short" that is based on dual SMAD pathway inhibition. This protocol yields high percentages of NC cell populations from multiple human induced pluripotent stem and human embryonic stem cell lines in 8 days. The resulting cells can be propagated easily, retain NC marker expression over multiple passages, and can spontaneously differentiate into several NC-derived cell lineages, including smooth muscle cells, peripheral neurons, and Schwann cells. NC cells generated by this method represent cranial, cardiac and trunk NC subpopulations based on global gene expression analyses, are similar to in vivo analogues, and express a common set of NC alternative isoforms. Functionally, they are also able to migrate appropriately in response to chemoattractants such as SDF-1, FGF8b, and Wnt3a. By yielding NC cells that likely represent all NC subpopulations in a shorter time frame than other published methods, our LSB-short method provides an ideal model system for further studies of human NC development and disease.
نوع الوثيقة: article in journal/newspaper
وصف الملف: application/pdf
اللغة: unknown
العلاقة: qt061156rt; https://escholarship.org/uc/item/061156rtTest
الإتاحة: https://escholarship.org/uc/item/061156rtTest
حقوق: public
رقم الانضمام: edsbas.929DDF28
قاعدة البيانات: BASE