دورية أكاديمية

Integrative prediction of gene expression with chromatin accessibility and conformation data.

التفاصيل البيبلوغرافية
العنوان: Integrative prediction of gene expression with chromatin accessibility and conformation data.
المؤلفون: Schmidt, Florian, Kern, Fabian, Schulz, Marcel H.
المصدر: Epigenetics & Chromatin; 2/6/2020, Vol. 13 Issue 1, p1-17, 17p
مصطلحات موضوعية: GENE expression, GENETIC regulation, MACHINE learning, CHROMATIN, TRANSCRIPTION factors
مصطلحات جغرافية: NAYARIT (Mexico)
مستخلص: Background: Enhancers play a fundamental role in orchestrating cell state and development. Although several methods have been developed to identify enhancers, linking them to their target genes is still an open problem. Several theories have been proposed on the functional mechanisms of enhancers, which triggered the development of various methods to infer promoter–enhancer interactions (PEIs). The advancement of high-throughput techniques describing the three-dimensional organization of the chromatin, paved the way to pinpoint long-range PEIs. Here we investigated whether including PEIs in computational models for the prediction of gene expression improves performance and interpretability. Results: We have extended our TEPIC framework to include DNA contacts deduced from chromatin conformation capture experiments and compared various methods to determine PEIs using predictive modelling of gene expression from chromatin accessibility data and predicted transcription factor (TF) motif data. We designed a novel machine learning approach that allows the prioritization of TFs binding to distal loop and promoter regions with respect to their importance for gene expression regulation. Our analysis revealed a set of core TFs that are part of enhancer–promoter loops involving YY1 in different cell lines. Conclusion: We present a novel approach that can be used to prioritize TFs involved in distal and promoter-proximal regulatory events by integrating chromatin accessibility, conformation, and gene expression data. We show that the integration of chromatin conformation data can improve gene expression prediction and aids model interpretability. [ABSTRACT FROM AUTHOR]
Copyright of Epigenetics & Chromatin is the property of BioMed Central and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
قاعدة البيانات: Complementary Index
الوصف
تدمد:17568935
DOI:10.1186/s13072-020-0327-0