دورية أكاديمية

Prospects for the use of drugs from the group of agonists of glucagon-like peptide-1 receptors in the treatment of non-alcoholic fatty liver disease ; Перспективы использования препаратов группы агонистов рецепторов глюкагоноподобного пептида 1 в лечении неалкогольной жировой болезни печени

التفاصيل البيبلوغرافية
العنوان: Prospects for the use of drugs from the group of agonists of glucagon-like peptide-1 receptors in the treatment of non-alcoholic fatty liver disease ; Перспективы использования препаратов группы агонистов рецепторов глюкагоноподобного пептида 1 в лечении неалкогольной жировой болезни печени
المؤلفون: L. A. Suplotova, A. I. Fedorova, D. S. Kulmametova, T. S. Dushina, O. B. Makarova, Л. А. Суплотова, А. И. Федорова, Д. С. Кульмаметова, Т. С. Душина, О. Б. Макарова
المصدر: Meditsinskiy sovet = Medical Council; № 23 (2022); 148-155 ; Медицинский Совет; № 23 (2022); 148-155 ; 2658-5790 ; 2079-701X
بيانات النشر: REMEDIUM GROUP Ltd.
سنة النشر: 2023
المجموعة: Medical Council (E-Journal) / Медицинский Совет
مصطلحات موضوعية: агонисты рецепторов глюкагоноподобного пептида 1, steatosis, metabolic syndrome, pharmacotherapy, glucagon-like peptide-1 receptor agonists, стеатоз, метаболический синдром, фармакотерапия
الوصف: Non-alcoholic fatty liver disease (NAFLD) is one of the most common liver diseases. To a large extent, the development of this disease is associated with metabolic syndrome. There is a pathogenetic association of NAFLD with obesity, type 2 diabetes mellitus (DM2), cardiovascular diseases and chronic kidney disease. Numerous studies demonstrate that an increase in the incidence of NAFLD occurs in parallel with an increase in the prevalence of obesity and DM 2. A number of scientific studies in the field of medicine have made it possible to identify the main pathogenetic mechanisms of the development of the disease, as well as the possibility of using various pharmacological drugs to correct these conditions. Currently, the possibility of using in the future a group of drugs that have a single mechanism for controlling the development of hepatic steatosis, and further progression with the formation of inflammation, cirrhosis and, in some cases, hepatocellular carcinoma, is being considered. Of particular interest is a class of drugs intended for the treatment of type 2 diabetes and obesity – glucagon-like peptide-1 receptor agonists (arGLP-1). A search was made of clinical studies, meta-analyses, literature reviews in databases and registries of medical publications over a period of 10 years. Changes in anthropometric indications, changes in non-invasive markers of liver steatosis, inflammation and fibrosis, as well as histological data on the background of the use of drugs of the arGLP-1 class were studied. It has been demonstrated that the study drug class may have a significant potential for impact on NAFLD. However, further studies with sufficient duration and histological evaluation are needed to fully evaluate the effectiveness of arGLP-1 in the treatment of NAFLD. ; Неалкогольная жировая болезнь печени (НАЖБП) – одно из наиболее распространенных заболеваний печени. В значительной степени развитие данного заболевания ассоциировано с метаболическим синдромом. Имеется патогенетическая связь НАЖБП с ожирением, ...
نوع الوثيقة: article in journal/newspaper
وصف الملف: application/pdf
اللغة: Russian
العلاقة: https://www.med-sovet.pro/jour/article/view/7307/6529Test; Маевская М.В., Котовская Ю.В., Ивашкин В.Т., Ткачева О.Н., Трошина Е.А., Шестакова М.В. и др. Национальный Консенсус для врачей по ведению взрослых пациентов с неалкогольной жировой болезнью печени и ее основными коморбидными состояниями. Терапевтический архив. 2022;(2):216–253. https://doi.org/10.26442/00403660.2022.02.201363Test.; Бабенко А.Ю., Лаевская М.Ю. Неалкогольная жировая болезнь печени – взаимосвязи с метаболическим синдромом. РМЖ. 2018;(1):34–40. Режим доступа: https://www.rmj.ru/articles/endokrinologiya/Nealkogolynaya_ghirovaya_bolezny_pecheni_vzaimosvyazi_s_metabolicheskim_sindromomTest.; Pierantonelli I., Svegliati-Baroni G. Nonalcoholic fatty liver disease: basic pathogenetic mechanisms in the progression from NAFLD to NASH. Transplantation. 2019;103(1):e1–e13. https://doi.org/10.1097/TP.0000000000002480Test.; Day C.P., James O.F.W. Steatohepatitis: a tale of two “hits”? Gastroenterology. 1998;114(4):842–845. https://doi.org/10.1016/s0016-5085Test(98)70599-2.; Caligiuri A., Gentilini A., Marra F. Molecular pathogenesis of NASH. Int J Mol Sci. 2016;17(9):1575. https://doi.org/10.3390/ijms17091575Test.; Ouyang X., Cirillo P., Sautin Y., McCall S., Bruchette J.L., Diehl A.M. et al. Fructose consumption as a risk factor for non-alcoholic fatty liver disease. J Hepatol. 2008;48(6):993–999. https://doi.org/10.1016/j.jhep.2008.02.011Test.; Tappy L., Lê K.A. Metabolic effects of fructose and the worldwide increase in obesity. Physiol Rev. 2010;90(1):23–46. https://doi.org/10.1152/physrev.00019.2009Test.; Jegatheesan P., De Bandt J.P. Fructose and NAFLD: the multifaceted aspects of fructose metabolism. Nutrients. 2017;9(3):230. https://doi.org/10.3390/nu9030230Test.; Chandrasekaran K., Swaminathan K., Chatterjee S., Dey A. Apoptosis in HepG2 cells exposed to high glucose. Toxicol in Vitro. 2010;24(2):387–396. https://doi.org/10.1016/j.tiv.2009.10.020Test.; Civera M., Urios A., Garcia-Torres M.L., Ortega J., Martinez-Valls J., Cassinello N. et al. Relationship between insulin resistance, inflammation and liver cell apoptosis in patients with severe obesity. Diabetes Metab Res Rev. 2010;26(3):187–192. https://doi.org/10.1002/dmrr.1070Test.; Кучерявый Ю.А., Маевская Е.А., Ахтаева М.Л., Краснякова Е.А. Неалкогольный стеатогепатит и кишечная микрофлора: есть ли потенциал пребиотических препаратов в лечении? Медицинский совет. 2013;(2):46–51. Режим доступа: https://www.med-sovet.pro/jour/article/view/963/0Test.; Gambino R., Bugianesi E., Rosso C., Mezzabotta L., Pinach S., Alemanno N. et al. Different serum free fatty acid profiles in NAFLD subjects and healthy controls after oral fat load. Int J Mol Sci. 2016;17(4):479. https://doi.org/10.3390/ijms17040479Test.; Салль Т.С., Щербакова Е.С., Ситкин С.И., Вахитов Т.Я., Бакулин И.Г., Демьянова Е.В. Молекулярные механизмы развития неалкогольной жировой болезни печени. Профилактическая медицина. 2021;(4):120–131. https://doi.org/10.17116/profmed202124041120Test.; Bae C.S., Park S.H. The involvement of p38 MAPK and JNK activation in palmitic acid-induced apoptosis in rat hepatocytes. Journal of Life Science. 2009;19(8):1119–1124.; Petersen M.C., Shulman G.I. Mechanisms of insulin action and insulin resistance. Physiol Rev. 2018;98(4):2133–2223. https://doi.org/10.1152/physrev.00063.2017Test.; Пеньков Д.Н., Егоров А.Д., Мозговая М.Н., Ткачук В.А. Связь инсулиновой резистентности с адипогенезом: роль транскрипционных и секретируемых факторов. Биохимия. 2013;(1):14–26. Режим доступа: https://biochemistrymoscow.com/ru/archive/2013/78-01-0014Test.; Qiang G., Kong H.W., Xu S., Pham H.A., Parlee S.D., Burr A.A. et al. Lipodystrophy and severe metabolic dysfunction in mice with adipose tissue-specific insulin receptor ablation. Mol Мetab. 2016;5(7):480–490. https://doi.org/10.1016/j.molmet.2016.05.005Test.; Wu X., Chen K., Williams K.J. The role of pathway-selective insulin resistance and responsiveness in diabetic dyslipoproteinemia. Curr Opin Lipidol. 2012;23(4):334–344. https://doi.org/10.1097/MOL.0b013e3283544424Test.; Abulizi A., Perry R.J., Camporez J.P.G., Jurczak M.J., Petersen K.F., Aspichueta P. et al. A controlled‐release mitochondrial protonophore reverses hypertriglyceridemia, nonalcoholic steatohepatitis, and diabetes in lipodystrophic mice. FASEB J. 2017;31(7):2916–2924. https://doi.org/10.1096/fj.201700001RTest.; Bechmann L.P., Hannivoort R.A., Gerken G., Hotamisligil G.S., Trauner M., Canbay A. The interaction of hepatic lipid and glucose metabolism in liver diseases. J Hepatol. 2012;56(4):952–964. https://doi.org/10.1016/j.jhep.2011.08.025Test.; Mota M., Banini B.A., Cazanave S.C., Sanyal A.J. Molecular mechanisms of lipotoxicity and glucotoxicity in nonalcoholic fatty liver disease. Metabolism. 2016;65(8):1049–1061. https://doi.org/10.1016/j.metabol.2016.02.014Test.; Brandi G., Lorenzo S.D., Candela M., Pantaleo M.A., Bellentani S., Tovoli F. et al. Microbiota, NASH, HCC and the potential role of probiotics. Carcinogenesis. 2017;38(3):231–240. https://doi.org/10.1093/carcin/bgx007Test.; Monsour Jr.H.P., Frenette C.T., Wyne K. Fatty liver: a link to cardiovascular disease–its natural history, pathogenesis, and treatment. Methodist Debakey Cardiovasc J. 2012;8(3):21. https://doi.org/10.14797/mdcj-8-3-21Test.; Buechler C., Wanninger J., Neumeier M. Adiponectin, a key adipokine in obesity related liver diseases. World J Gastroenterol. 2011;17(23):2801. https://doi.org/10.3748/wjg.v17.i23.2801Test.; Engel J.A., Jerlhag E. Role of appetite-regulating peptides in the pathophysiology of addiction: implications for pharmacotherapy. CNS Drugs. 2014;28(10):875–886. https://doi.org/10.1007/s40263-014-0178-yTest.; Кытикова О.Ю., Новгородцева Т.П., Денисенко Ю.К., Антонюк М.В., Гвозденко Т.А. Толл-подобные рецепторы в патофизиологии ожирения. Ожирение и метаболизм. 2020;(1):56–63. https://doi.org/10.14341/omet10336Test.; Dube P.E., Brubaker P.L. Nutrient, neural and endocrine control of glucagon-like peptide secretion. Horm Metab Res. 2004;36(11–12):755–760. https://doi.org/10.1055/s-2004-826159Test.; Галстян Г.Р., Каратаева Е.А., Юдович Е.А. Эволюция агонистов рецепторов глюкагоноподобного пептида-1 в терапии сахарного диабета 2-го типа. Сахарный диабет. 2017;(4):286–298. https://doi.org/10.14341/DM8804Test.; Раскина К. Долгоживущий человеческий аналог ГПП-1. Актуальная эндокринология. 2015;6(1). Режим доступа: https://actendocrinology.ru/archives/2507Test.; Халимов Ю.Ш., Кузьмич В.Г. Органопротективные эффекты агонистов рецепторов глюкагоноподобного пептида 1-го типа по результатам доказательных исследований сердечно-сосудистой безопасности. Медицинский совет. 2019;(21):189–197. https://doi.org/10.21518/2079-701X-2019-21-189-197Test.; Scrocchi L.A., Brown T.J., Maclusky N., Brubaker P.L., Auerbach A.B., Joyner A.L., Drucker D.J. Glucose intolerance but normal satiety in mice with a null mutation in the glucagon-like peptide 1 receptor gene. Nat Мed. 1996;2(11):1254–1258. https://doi.org/10.1038/nm1196-1254Test.; Buteau J. GLP-1 receptor signaling: effects on pancreatic β-cell proliferation and survival. Diabetes Мetab. 2008;34(Suppl. 2):S73–77. https://doi.org/10.1016/S1262-3636Test(08)73398-6.; Fehmann H.C., Habener J.F. Insulinotropic hormone glucagon-like peptide-I (7-37) stimulation of proinsulin gene expression and proinsulin biosynthesis in insulinoma beta TC-1 cells. Endocrinology. 1992;130(1):159–166. https://doi.org/10.1210/endo.130.1.1309325Test.; Campbell J.E., Drucker D.J. Pharmacology, physiology, and mechanisms of incretin hormone action. Cell Metab. 2013;17(6):819–837. https://doi.org/10.1016/j.cmet.2013.04.008Test.; Cryer P.E. Minireview: Glucagon in the pathogenesis of hypoglycemia and hyperglycemia in diabetes. Endocrinology. 2012;153(3):1039–1048. https://doi.org/10.1210/en.2011-1499Test.; Buse J.B., Sesti G., Schmidt W.E., Montanya E., Chang C.T., Xu Y. et al. Switching to once-daily liraglutide from twice-daily exenatide further improves glycemic control in patients with type 2 diabetes using oral agents. Diabetes Care. 2010;33(6):1300–1303. https://doi.org/10.2337/dc09-2260Test.; Henry R.R., Buse J.B., Sesti G., Davies M.J., Jensen K.H., Brett J. et al. Efficacy of Anti Hyperglycemic Therapies and the Influence of Baseline Hemoglobin A1C: A Meta-Analysis of the Liraglutide Development Program. Endocr Pract. 2011;17(6):906–913. https://doi.org/10.4158/ep.17.6.906Test.; Monami M., Dicembrini I., Nreu B., Andreozzi F., Sesti G., Mannucci E. Predictors of response to glucagon-like peptide-1 receptor agonists: a meta-analysis and systematic review of randomized controlled trials. Acta Diabetol. 2017;54(12):1101–1114. https://doi.org/10.1007/s00592-017-1054-2Test.; Fan H., Pan Q.R., Xu Y., Yang X.C. Exenatide improves type 2 diabetes concomitant with non-alcoholic fatty liver disease. Arq Bras de Endocrinol Metabol. 2013;57(9):702–708. https://doi.org/10.1590/s0004-27302013000900005Test.; Cusi K., Sattar N., García-Pérez L.-E., Pavo I., Yu M., Robertson K.E. et al. Dulaglutide decreases plasma aminotransferases in people with Type 2 diabetes in a pattern consistent with liver fat reduction: a post hoc analysis of the AWARD programme. Diab Med. 2018;35(10):1434–1439. https://doi.org/10.1111/dme.13697Test.; Aroda V.R., Rosenstock J., Terauchi Y., Altuntas Y., Lalic N.M., Morales Villegas E.C. et al. PIONEER 1: randomized clinical trial of the efficacy and safety of oral semaglutide monotherapy in comparison with placebo in patients with type 2 diabetes. Diabetes Care. 2019;42(9):1724–1732. https://doi.org/10.2337/dc19-0749Test.; Гоникова З.З., Никольская А.О., Кирсанова Л.А., Шагидулин М.Ю., Онищенко Н.А., Севастьянов В.И. Сравнительный анализ эффективности стимуляции процессов регенерации печени клетками костного мозга и общей РНК этих клеток. Вестник трансплантологии и искусственных органов. 2019;(1):113–121. https://doi.org/10.15825/1995-1191-2019-1-113-121Test.; Feng W., Bi Y., Li P., Yin T.T., Gao C.X., Shen S.M. et al. Randomized trial comparing the effects of gliclazide, liraglutide, and metformin on diabetes with non‐alcoholic fatty liver disease. J Diabetes. 2017;9(8):800–809. https://doi.org/10.1111/jdi.12888Test.; Gluud L.L., Knop F.K., Vilsbоll T. Effects of lixisenatide on elevated liver transaminases: systematic review with individual patient data meta-analysis of randomised controlled trials on patients with type 2 diabetes. BMJ Open. 2014;4(12):e005325. https://doi.org/10.1136/bmjopen-2014-005325Test.; Sjоberg K.A., Holst J.J., Rattigan S., Richter E.A., Kiens B. GLP-1 increases microvascular recruitment but not glucose uptake in human and rat skeletal muscle. Am J Physiol Endocrinol Metab. 2014;306(4):E355–E362. https://doi.org/10.1152/ajpendo.00283.2013Test.; Nogueiras R., Pérez-Tilve D., Veyrat-Durebex C., Morgan D.A., Varela L., Haynes W.G. et al. Direct control of peripheral lipid deposition by CNS GLP-1 receptor signaling is mediated by the sympathetic nervous system and blunted in diet-induced obesity. J Neurosci. 2009;29(18):5916–5925. https://doi.org/10.1523/JNEUROSCI.5977-08.2009Test.; Richards P., Parker H.E., Adriaenssens A.E., Hodgson J.M., Cork S.C., Trapp S. et al. Identification and characterization of GLP-1 receptor-expressing cells using a new transgenic mouse model. Diabetes. 2014;63(4):1224–1233. https://doi.org/10.2337/db13-1440Test.; Baggio L.L., Ussher J.R., McLean B.A., Cao X., Kabir M.G., Mulvihill E.E. et al. The autonomic nervous system and cardiac GLP-1 receptors control heart rate in mice. Mol Metab. 2017;6(11):1339–1349. https://doi.org/10.1016/j.molmet.2017.08.010Test.; Szablowski J.O., Lee-Gosselin A., Lue B., Malounda D., Shapiro M.G. Acoustically targeted chemogenetics for the non-invasive control of neural circuits. Nat Biomed Eng. 2018;2(7):475–484. https://doi.org/10.1038/s41551-018-0258-2Test.; Ерофеев А.И., Матвеев М.В., Терехин С.Г., Захарова О.А., Плотникова П.В., Власова О.Л. Оптогенетика – новый метод исследования нейрональной активности. Научно-технические ведомости Санкт-Петербургского государственного политехнического университета. Физико-математические науки. 2015;(3):61–74. Режим доступа: https://physmath.spbstu.ru/article/2015.29.7Test.; Gaykema R.P., Newmyer B.A., Ottolini M., Raje V., Warthen D.M., Lambeth P.S. et al. Activation of murine pre-proglucagon – producing neurons reduces food intake and body weight. J Сlin Invest. 2017;127(3):1031–1045. https://doi.org/10.1172/JCI81335Test.; Burmeister M.A., Ayala J.E., Smouse H., Landivar-Rocha A., Brown J.D., Drucker D.J. et al. The hypothalamic glucagon-like peptide 1 receptor is sufficient but not necessary for the regulation of energy balance and glucose homeostasis in mice. Diabetes. 2017;66(2):372–384. https://doi.org/10.2337/db16-1102Test.; Kooijman S., Wang Y., Parlevliet E.T., Boon M.R., Edelschaap D., Snaterse G. et al. Central GLP-1 receptor signalling accelerates plasma clearance of triacylglycerol and glucose by activating brown adipose tissue in mice. Diabetologia. 2015;58(11):2637–2646. https://doi.org/10.1007/s00125-015-3727-0Test.; Lockie S.H., Heppner K.M., Chaudhary N., Chabenne J.R., Morgan D.A., Veyrat-Durebex C. et al. Direct control of brown adipose tissue thermogenesis by central nervous system glucagon-like peptide-1 receptor signaling. Diabetes. 2012;61(11):2753–2762. https://doi.org/10.2337/db11-1556Test.; Beiroa D., Imbernon M., Gallego R., Senra A., Herranz D., Villarroya F. et al. GLP-1 agonism stimulates brown adipose tissue thermogenesis and browning through hypothalamic AMPK. Diabetes. 2014;63(10):3346–3358. https://doi.org/10.2337/db14-0302Test.; Brierley D.I., de Lartigue G. Reappraising the role of the vagus nerve in GLP‐1‐mediated regulation of eating. Br J Pharmacol. 2022;179(4):584–599. https://doi.org/10.1111/bph.15603Test.; Frias J.P., Bonora E., Ruiz L.N., Li Y.G., Yu Z., Milicevic Z. et al. Efficacy and safety of dulaglutide 3.0 mg and 4.5 mg versus dulaglutide 1.5 mg in metformin-treated patients with type 2 diabetes in a randomized controlled trial (AWARD-11). Diabetes Care. 2021;44(3):765–773. https://doi.org/10.2337/dc20-1473Test.; Newsome P.N., Buchholtz K., Cusi K., Linder M., Okanoue T., Ratziu V. et al. A placebo-controlled trial of subcutaneous semaglutide in nonalcoholic steatohepatitis. N Engl J Med. 2021;384(12):1113–1124. https://doi.org/10.1056/NEJMoa2028395Test.; O’Neil P.M., Birkenfeld A.L., McGowan B., Mosenzon O., Pedersen S.D., Wharton S. et al. Efficacy and safety of semaglutide compared with liraglutide and placebo for weight loss in patients with obesity: a randomised, double-blind, placebo and active controlled, dose-ranging, phase 2 trial. Lancet. 2018;392(10148):637–649. https://doi.org/10.1016/S0140-6736Test(18)31773-2.; Lomonaco R., Leiva E.G., Bril F., Shrestha S., Mansour L., Budd J. et al. Advanced liver fibrosis is common in patients with type 2 diabetes followed in the outpatient setting: the need for systematic screening. Diabetes Care. 2021;44(2):399–406. https://doi.org/10.2337/dc20-1997Test.; Seko Y., Sumida Y., Tanaka S., Mori K., Taketani H., Ishiba H. et al. Effect of 12‐week dulaglutide therapy in Japanese patients with biopsy‐proven non‐alcoholic fatty liver disease and type 2 diabetes mellitus. Hepatol Res. 2017;47(11):1206–1211. https://doi.org/10.1111/hepr.12837Test.; Mantovani A., Petracca G., Beatrice G., Csermely A., Lonardo A., Targher G. Glucagon-like peptide-1 receptor agonists for treatment of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis: an updated meta-analysis of randomized controlled trials. Metabolites. 2021;11(2):73. https://doi.org/10.3390/metabo11020073Test.; Patel Chavez C., Cusi K., Kadiyala S. The emerging role of glucagon-like Peptide-1 receptor agonists for the management of NAFLD. J Clin Endocrinol Metab. 2022;107(1):29–38. https://doi.org/10.1210/clinem/dgab578Test.; Ghosal S., Datta D., Sinha B. A meta-analysis of the effects of glucagon-like-peptide 1 receptor agonist (GLP1-RA) in nonalcoholic fatty liver disease (NAFLD) with type 2 diabetes (T2D). Sci Rep. 2021;11(1):1–8. https://doi.org/10.1038/s41598-021-01663-yTest.; https://www.med-sovet.pro/jour/article/view/7307Test
DOI: 10.21518/2079-701X-2022-16-23-148-155
الإتاحة: https://doi.org/10.21518/2079-701X-2022-16-23-148-155Test
https://doi.org/10.26442/00403660.2022.02.201363Test
https://doi.org/10.1097/TP.0000000000002480Test
https://doi.org/10.3390/ijms17091575Test
https://doi.org/10.1016/j.jhep.2008.02.011Test
https://doi.org/10.1152/physrev.00019.2009Test
https://doi.org/10.3390/nu9030230Test
https://doi.org/10.1016/j.tiv.2009.10.020Test
https://doi.org/10.1002/dmrr.1070Test
https://doi.org/10.3390/ijms17040479Test
حقوق: Authors publishing their articles in this journal shall agree to the following:Authors reserve the copyright to the work and grant the journal a license to publish the work for the first time Creative Commons Attribution License (CC BY), which allows other persons to distribute this work with the obligatory preservation of references to the authors of the original work and the original publication in this journal.Authors reserve the right to conclude separate contractual arrangements regarding the non-exclusive distribution of the work version in the form published here (for example, posting it in the institute’s repository, publication in a book), with reference to its original publication in this journal.Authors have the right to post work on the Internet (for example, in the institute’s repository or personal website) before and during the process of considering it by this journal, as this can result in a productive discussion and more references to this work. ; Авторы, публикующие в данном журнале, соглашаются со следующим:Авторы сохраняют за собой авторские права на работу и предоставляют журналу право первой публикации работы на условиях лицензии Creative Commons Attribution License, которая позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в журнале.Авторы сохраняют право заключать отдельные контрактные договорённости, касающиеся не-эксклюзивного распространения версии работы в опубликованном виде (например, размещение ее в институтском хранилище, публикацию в книге), со ссылкой на ее оригинальную публикацию.Авторы имеют право размещать работу в сети Интернет (например в институтском хранилище или персональном сайте) до и во время процесса рассмотрения ее данным журналом, так как это может привести к продуктивному обсуждению и большему количеству ссылок на данную работу. (См. The Effect of Open Access).
رقم الانضمام: edsbas.B047A7EC
قاعدة البيانات: BASE
الوصف
DOI:10.21518/2079-701X-2022-16-23-148-155