دورية أكاديمية

Zebrafish: A Model to Study and Understand the Diabetic Nephropathy and Other Microvascular Complications of Type 2 Diabetes Mellitus

التفاصيل البيبلوغرافية
العنوان: Zebrafish: A Model to Study and Understand the Diabetic Nephropathy and Other Microvascular Complications of Type 2 Diabetes Mellitus
المؤلفون: Charles Sharchil, Amulya Vijay, Vinu Ramachandran, Sambhavi Bhagavatheeswaran, Reena Devarajan, Bhupendra Koul, Dhananjay Yadav, Anandan Balakrishnan
المصدر: Veterinary Sciences, Vol 9, Iss 7, p 312 (2022)
بيانات النشر: MDPI AG, 2022.
سنة النشر: 2022
المجموعة: LCC:Veterinary medicine
مصطلحات موضوعية: diabetes mellitus, microvascular complications, diabetic nephropathy, zebrafish, animal model, Veterinary medicine, SF600-1100
الوصف: Diabetes mellitus (DM) is a complicated metabolic illness that has had a worldwide impact and placed an unsustainable load on both developed and developing countries’ health care systems. According to the International Diabetes Federation, roughly 537 million individuals had diabetes in 2021, with type 2 diabetes mellitus accounting for the majority of cases (T2DM). T2DM is a chronic illness defined by insufficient insulin production from pancreatic islet cells. T2DM generates various micro and macrovascular problems, with diabetic nephropathy (DN) being one of the most serious microvascular consequences, and which can lead to end-stage renal disease. The zebrafish (Danio rerio) has set the way for its future as a disease model organism. As numerous essential developmental processes, such as glucose metabolism and reactive metabolite production pathways, have been identified in zebrafish that are comparable to those seen in humans, it is a good model for studying diabetes and its consequences. It also has many benefits over other vertebrate models, including the permeability of its embryos to small compounds, disease-driven therapeutic target selection, in vivo validation, and deconstruction of biological networks. The organism can also be utilized to investigate and understand the genetic abnormalities linked to the onset of diabetes problems. Zebrafish may be used to examine and visualize the growth, morphology, and function of organs under normal physiological and diabetic settings. The zebrafish has become one of the most useful models for studying DN, especially when combined with genetic alterations and/or mutant or transgenic fish lines. The significant advancements of CRISPR and next-generation sequencing technology for disease modelling in zebrafish, as well as developments in molecular and nano technologies, have advanced the understanding of the molecular mechanisms of several human diseases, including DN. In this review, we emphasize the physiological and pathological processes relating to microvascular problems in zebrafish, as well as the many experimental zebrafish models used to research DN, and the DN-related outcomes and mechanisms observed in zebrafish.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 2306-7381
العلاقة: https://www.mdpi.com/2306-7381/9/7/312Test; https://doaj.org/toc/2306-7381Test
DOI: 10.3390/vetsci9070312
الوصول الحر: https://doaj.org/article/c5807f45d1564863a92b5bce35c3f1d1Test
رقم الانضمام: edsdoj.5807f45d1564863a92b5bce35c3f1d1
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:23067381
DOI:10.3390/vetsci9070312