يعرض 1 - 10 نتائج من 32 نتيجة بحث عن '"Mineral Physics"', وقت الاستعلام: 1.15s تنقيح النتائج
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
    مؤتمر

    المساهمون: Stavrakas, I., Technological Educational Institution of Athens, Triantis, D., Anastasiadis, C., Nardi, A., Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia, Carluccio, R., Vallianatos, F., Technological Educational Institution of Crete

    العلاقة: Iasme/Wseas International conference on Geology and Seismology; [1] M. Hayakawa, (Editor) Electromagnetic phenomena related to earthquake prediction, Terra Scientific Publishing, 1999. [2] M. Hayakawa and Y. Fujinawa, (Editors), Electromagnetic Phenomena Related to Earthquake Prediction, Terra Scientific Publishing, Company, Tokyo, 1994. [3] M. Hayakawa and O.A. Molchanov (Editors), Seismo Electromagnetics: Lithosphere-Atmosphere-Ionosphere Coupling, TERRAPUB, Tokyo, 2002. [4] D.A. Fiffolt, V.F. Petrenko,. and E.M. Schulson, Preliminary study of electromagnetic emissions from cracks in ice, Philosophical Magazine B, 67, 1993, pp. 289. [5] S.G. O'Keefe and D.V. Thiel, A mechanism for the production of electromagnetic radiation during fracture of Brittle materials, Phys. Earth Plane. Inter., 89, 1995, pp. 127-135. [6] V. Frid, A. Rabinovitch and D. Bahat, Fracture induced electromagnetic radiation, Journal of physics D: applied physics, 36, 2003, 1620-1628. [7] G.O. Cress, B.T., Brady, and G.A. Rowell, Sources of electromagnetic radiation from fracture of rock samples in laboratory, Geophys. Res. Lett., 14, 1987, pp. 331. [8] J.W. Warwick, C. Stoker and T.R. Meyer, Radio emission associated with rock fracture : Possible application to the great Chilean earthquake of May 22, 1960, J. Geophys. Res., 87, 1982, pp. 2851. [9] T. Ogawa, K. Oike, and T. Miura, Electromagnetic radiation from rocks, J. Geophys. Res., 90, 1985, pp. 6245. [10] S. Yoshida, M. Uyeshima, and M. Nakatani, Electric potential changes associated with a slip failure of granite : Preseismic and coseismic signals, J. Geophys. Res., 102, 1997, 14883. [11] V. Hadjicontis and C. Mavromatou, Transient electric signals prior to rock failure under uniaxial compression, Geophys. Res. Lett., 21, 1994, pp. 1687. [12] V. Hadjicontis and C. Mavromatou, Laboratory investigation of electric signals preceding earthquakes, in Sir J. Lighthill (ed.), A critical review of VAN, World Scientific, Singapore, 1996, pp. 105-117. [13] C. Mavromatou and V. Hadjicontis, Laboratory investigation of transient electric signals detected by VAN network in Greece, Electromagnetic Phenomena Related to Earthquake Prediction, Edited by M.Havakawa and Y.Fujinawa, Terra Scientific Publishing Company, Tokyo, 1994, pp 293-305. [14] I. Stavrakas, D. Triantis, Z. Agioutantis, S. Maurigiannakis, V. Saltas, F. Vallianatos, and M. Clarke, Pressure stimulated currents in rocks and their correlation with mechanical properties, Natural Hazards and Earth System Sciences, 4, 2004, pp. 563–567. [15] Ι. Stavrakas, C. Anastasiadis, D. Triantis and F. Vallianatos, Piezo Stimulated currents in marble samples: Precursory and concurrent – with – failure signals, Natural Hazards and Earth System Sciences, 3, 2003, pp. 243-247. [16] C. Anastasiadis, D. Triantis, I. Stavrakas, F. Vallianatos, Pressure stimulated currents (PSC) in marble samples after the application of various stress modes before fracture, Annals of Geophysics, vol 47, No 1, 2004, pp. 21-28. [17] F. Vallianatos, D. Triantis, A. Tzanis, C. Anastasiadis, I. Stavrakas, Electric Earthquake Precursors: From Laboratory Results to Field Observations, Phys. Chem. Earth, 29, 2004, pp. 339-351. [18] D. Finkelstein, R.D. Hill and J.R. Powell, The piezoelectric theory of earthquake lightning, J. Geophys. Res., 78, 1973, pp. 992-993. [19] D.A. Lockner, M.J.S. Johnson., and J.D. Byerlee, A mechanism to explain the generation of earthquake lights, Nature, 302, 1983, pp. 28-33. [20] U. Nitsan, Electromagnetic emission accompanying fracture of quartz-bearing rocks, Geophys. Res. Lett., 4, 1977, pp. 333-337. [21] S. Yoshida, M. Uyeshima and M. Nakatani, Electric potential changes associated with a slip failure of granite : Preseismic and coseismic signals, J. Geophys. Res., 102, 1997, pp. 14883-14897. [22] H. Mizutani, T. Ishido, T. Yokokura and S. Ohnishi, Electrokinetic phenomena associated with earthquakes, Geophys. Res. Lett., 3, 1976, pp. 365-368. [23] L. Jouniaux and J.P. Pozzi, Permeability dependencs of streaming potential in rocks for various fluid conductivities, Geophys. Res. Lett., 22, 1995, pp.485-488. [24] R.W. Whitworth, Charged dislocations in ionic crystals, Advances in Physics, 24, 1975, pp. 203-304. [25] L. Slifkin, Seismic electric signals from displacement of charged dislocations. Tectonophysics, 224, 1993, pp. 149-152. [26] F. Vallianatos and A. Tzanis, A model for the generation of precursory electric and magnetic fields associated with the deformation rate of the earthquake focus, in M. Hayakawa (ed.), Atmospheric and Ionospheric electromagnetic phenomena associated with Earthquakes, Terra Scientific Publishing Co, 287-305, 1999a. [27] F. Vallianatos, and A. Tzanis, On possible scaling laws between Electric Earthquake Precursors (EEP) and Earthquake Magnitude, Geophys. Res. Lett., 26, 13, 1999b, pp. 2013-2016. [28] Z. Agioutantis, Elements of Geomechanics - Rock Mechanics, Ion Publishing, in Greek., 2002 [29] Nardi A., Caputo M.; 2006, A perspective electric earthquake precursor observed in the Apennines, Bollettino di Geofisica Teorica ed Applicata, Vol. 47, n. 1-2, pp. 3-12; March – June 2006. [30] Nardi A., Caputo M. and Chiarabba C.; 2007, Possible electromagnetic earthquake precursors in two years of ELF-VLF monitoring in the atmosphere, Vol. 48, n. 2, pp. 205-212; June 2007. [31] Nardi A. (2001), Emissioni elettromagnetiche in rocce sottoposte a sollecitazione meccanica. Un possibile precursore sismico? – Master Thesis, University of Rome "La Sapienza". [32] Nardi A. (2005): Emissioni elettro-magnetiche naturali come precursori di fenomeni sismici, PHD thesis, University of Rome "La Sapienza"; http://hdl.handle.net/2122/3800Test

  9. 9
    دورية أكاديمية

    المساهمون: Laboratoire de Planétologie et Géodynamique de Nantes UMR 6112 (LPGN), Université de Nantes (UN)-Centre National de la Recherche Scientifique (CNRS), Royal Observatory of Belgium = Observatoire Royal de Belgique (ROB), Institut d'Astronomie et de Géophysique Georges Lemaître (UCL-ASTR), Université Catholique de Louvain = Catholic University of Louvain (UCL), HELIOS - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Université de Brest (UBO)

    المصدر: ISSN: 2169-9313 ; EISSN: 2169-9356.

  10. 10
    دورية أكاديمية

    المساهمون: Benson, P., Mineral, Ice and Rock Physics Laboratory, University College London, London, UK., Schubnel, A., Lassonde Institute, University of Toronto, Toronto, Ontario, Canada., Vinciguerra, S., Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma1, Roma, Italia, Trovato, C., Dipartimento di Fisica e Astronomia, Universita`di Catania, Catania, Italy, Meredith, P. G., Young, P. R.

    العلاقة: J. Geophys. Res.; /111 (2006); Ayling, M. R., P. G. Meredith, and S. A. F. Murrell (1995), Microcracking during triaxial deformation of porous rocks monitored by changes in rock physical properties. 1. Elastic-wave propagation measurements on dry rocks, Tectonophysics, 245, 205– 221. Benson, P. M. (2004), Experimental study of void space, permeability and elastic anisotropy in crustal rock under ambient and isostatic pressure, Ph.D. thesis, 272 pp., Univ. of London, London. Benson, P. M., P. G. Meredith, E. S. Platzman, and R. E. White (2005), Pore fabric shape anisotropy in porous sandstone and its relation to elastic and permeability anisotropy under isostatic pressure, Int. J. Rock Mech. Min. Sci., 42, 890– 899, doi:10.1016/j.ijrmms.2005.05.003. Brace, W. F. (1980), Permeability of crystalline and argillaceous rocks, Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 17, 241– 251. Brace, W. F., J. B. Walsh, and W. T. Frangos (1968), Permeability of granite under high pressure, J. Geophys. Res., 73, 2225– 2236. Bruner, W. M. (1976), Comment on ‘‘Seismic velocities in dry and saturated cracked solids’’ by R. J. O’Connell and B. Budiansky, J. Geophys. Res., 81, 2573– 2576. Chun, K.-Y., G. A. Henderson, and J. Liu (2004), Temporal changes in P wave attenuation in the Loma Prieta rupture zone, J. Geophys. Res., 109, B02317, doi:10.1029/2003JB002498. Dienes, J. (1982), Permeability, percolation and statistical cracks mechanics, in Issues in Rock Mechanics, edited by R. E. Goodman and F. E. Heuze, pp. 86– 94, Am. Inst. of Min., Metal. and Pet. Eng., New York. Elsworth, D., and B. Voight (2001), The mechanics of harmonic gas pressurisation and failure of lava domes, Geophys. J. Int., 145, 187– 198. Fischer, G. J., and M. S. Paterson (1992), Measurement of permeability and storage capacity in rocks during deformation at high temperature and pressure, in Fault Mechanics and Transport Properties of Rocks, edited by B. Evans and T.-F. Wong, pp. 213– 252, Elsevier, New York. Gao, Y., and S. Crampin (2004), Observations of stress relaxation before earthquakes, Geophys. J. Int., 157, 578– 582. Gerst, A., and M. K. Savage (2004), Seismic anisotropy beneath Ruapehu volcano: A possible eruption forecasting tool, Science, 306, 1543– 1547. Gue´guen, Y., and J. Dienes (1989), Transport properties of rocks from statistics and percolation, Math. Geol., 21, 1 –13. Gue´guen, Y., T. Chelidze, and M. Le Ravalec (1997), Microstructures, percolation thresholds, and rock physical properties, Tectonophysics, 279, 23– 35. Hudson, J. A. (1980), Overall properties of a cracked solid, Math. Proc. Cambridge Philos. Soc., 88, 371–384. Hudson, J. A. (1990), Overall elastic properties of isotropic materials with arbitrary distribution of circular cracks, Geophys. J. Int., 102, 465–469. Hudson, J. A., E. Liu, and S. Crampin (1995), The mechanical properties of materials with interconnected cracks and pores, Geophys. J. Int., 124, 105–112. Hudson, J. A., T. Pointer, and E. Liu (2001), Effective-medium theories for fluid-saturated materials with aligned cracks, Geophys. Prospect., 49, 509–522. Jones, C., and P. Meredith (1998), An experimental study of elastic wave propagation anisotropy and permeability anisotropy in an illitic shale, paper presented at Eurock 98, Soc. of Pet. Eng., Trondheim, Norway. Kachanov, M. (1994), Elastic solids with many cracks and related problems, Adv. Appl. Mech., 30, 259–445. Kano, S., and N. Tsuchiya (2002), Parallelepiped cooling joint and anisotropy of P-wave velocity in the Takidani granitoid, Japan Alps, J. Volcanol. Geotherm. Res., 114, 465–477. Kern, H. (1978), The effect of high temperature and high confining pressure on compressional wave velocities in quartz bearing and quartz free igneous and metamorphic rocks, Tectonophysics, 44, 185– 203. Madden, T. R. (1983), Microcrack connectivity in rocks: A renormalization group approach to the critical phenomena of conduction and failure in crystalline rocks, J. Geophys. Res., 88, 585– 592. Miller, S. A. (2002), Properties of large ruptures and the dynamical influence of fluids on earthquakes and faulting, J. Geophys. Res., 107(B9), 2182, doi:10.1029/2000JB000032. Nishizawa, O. (1982), Seismic velocity anisotropy in a medium containing oriented cracks: Transverse isotropy case, J. Phys. Earth, 30, 331– 347. O’Connell, R., and B. Budiansky (1974), Seismic velocities in dry and saturated rocks, J. Geophys. Res., 79, 5412–5426. Peach, C., and C. Spiers (1996), Influence of crystal plastic deformation on dilatancy and permeability development in synthetic salt rock, Tectonophysics, 256, 101– 128. Rivier, N., E. Guyon, and E. Charlaix (1985), A geometrical approach to percolation through random fractured rocks, Geol. Mag., 122, 157–162. Rocchi, V., P. R. Sammonds, and C. R. J. Kilburn (2002), Flow and fracture maps for basaltic rock deformation at high temperatures, J. Volcanol. Geotherm. Res., 120, 25– 42. Sayers, C. M., and M. Kachanov (1995), Microcrack induced elastic wave anisotropy of brittle rocks, J. Geophys. Res., 100, 4149– 4156. Schubnel, A., and Y. Gue´guen (2003), Dispersion and anisotropy of elastic waves in cracked rocks, J. Geophys. Res., 108(B2), 2101, doi:10.1029/ 2002JB001824. Simmons, G., T. Todd, and W. S. Balridge (1975), Toward a quantitative relationship between elastic properties and cracks in low porosity rocks, Am. J. Sci., 275, 318– 345. Simpson, G., Y. Gue´guen, and F. Schneider (2001), Permeability enhancement due to microcrack dilatancy in the damage regime, J. Geophys. Res., 106, 3999– 4016. Stanchits, S., S. Vinciguerra, and G. Dresen (2006), Ultrasonic velocities, acoustic emission characteristics and crack damage of basalt and granite, Pure Appl. Geophys., in press. Vinciguerra, S., C. Trovato, P. Meredith, and P. Benson (2005), Relating seismic velocities, thermal cracking and permeability in Mt. Etna and Iceland basalts, Int. J. Rock Mech. Min. Sci., 42, 900 – 910, doi:10.1016/j.ijrmms.2005.05.022. Walsh, J. B. (1965), The effect of cracks on the compressibility of rock, J. Geophys. Res., 70, 381– 389. Zimmerman, R. W. (1991), Compressibility of Sandstones, Dev. Geosci., vol. 29, 173 pp., Elsevier, New York.; http://hdl.handle.net/2122/2308Test