يعرض 1 - 6 نتائج من 6 نتيجة بحث عن '"Huey Lan Huang"', وقت الاستعلام: 1.35s تنقيح النتائج
  1. 1
    دورية أكاديمية

    المصدر: International Journal of Molecular Sciences; Volume 22; Issue 3; Pages: 1338

    جغرافية الموضوع: agris

    الوصف: Age-related macular degeneration (AMD) is the progressive degeneration of the retinal pigment epithelium (RPE), retina, and choriocapillaris among elderly individuals and is the leading cause of blindness worldwide. Thus, a better understanding of the underlying mechanisms in retinal tissue activated by blue light exposure is important for developing novel treatment and intervention strategies. In this study, blue-light-emitting diodes with a wavelength of 440 nm were applied to RPE cells at a dose of 3.7 ± 0.75 mW/cm2 for 24 h. ARPE-19 cells were used to investigate the underlying mechanism induced by blue light exposure. A trypan blue exclusion assay was used for the cell viability determination. Flow cytometry was used for apoptosis rate detection and autophagy analysis. An immunofluorescence microscopy analysis was used to investigate cellular oxidative stress and DNA damage using DCFDA fluorescence staining and an anti-γH2AX antibody. Blue light exposure of zebrafish larvae was established to investigate the effect on retinal tissue development in vivo. To further demonstrate the comprehensive effect of blue light on ARPE-19 cells, next-generation sequencing (NGS) was performed for an ingenuity pathway analysis (IPA) to reveal additional related mechanisms. The results showed that blue light exposure caused a decrease in cell proliferation and an increase in apoptosis in ARPE-19 cells in a time-dependent manner. Oxidative stress increased during the early stage of 2 h of exposure and activated DNA damage in ARPE-19 cells after 8 h. Furthermore, autophagy was activated in response to blue light exposure at 24–48 h. The zebrafish larvae model showed the unfavorable effect of blue light in prohibiting retinal tissue development. The RNA-Seq results confirmed that blue light induced cell death and participated in tissue growth inhibition and maturation. The current study reveals the mechanisms by which blue light induces cell death in a time-dependent manner. Moreover, both the in vivo and NGS data uncovered ...

    وصف الملف: application/pdf

    العلاقة: Biochemistry; https://dx.doi.org/10.3390/ijms22031338Test

  2. 2

    المصدر: International Journal of Molecular Sciences
    Volume 22
    Issue 3
    International Journal of Molecular Sciences, Vol 22, Iss 1338, p 1338 (2021)

    الوصف: Age-related macular degeneration (AMD) is the progressive degeneration of the retinal pigment epithelium (RPE), retina, and choriocapillaris among elderly individuals and is the leading cause of blindness worldwide. Thus, a better understanding of the underlying mechanisms in retinal tissue activated by blue light exposure is important for developing novel treatment and intervention strategies. In this study, blue-light-emitting diodes with a wavelength of 440 nm were applied to RPE cells at a dose of 3.7 ±
    0.75 mW/cm2 for 24 h. ARPE-19 cells were used to investigate the underlying mechanism induced by blue light exposure. A trypan blue exclusion assay was used for the cell viability determination. Flow cytometry was used for apoptosis rate detection and autophagy analysis. An immunofluorescence microscopy analysis was used to investigate cellular oxidative stress and DNA damage using DCFDA fluorescence staining and an anti-&gamma
    H2AX antibody. Blue light exposure of zebrafish larvae was established to investigate the effect on retinal tissue development in vivo. To further demonstrate the comprehensive effect of blue light on ARPE-19 cells, next-generation sequencing (NGS) was performed for an ingenuity pathway analysis (IPA) to reveal additional related mechanisms. The results showed that blue light exposure caused a decrease in cell proliferation and an increase in apoptosis in ARPE-19 cells in a time-dependent manner. Oxidative stress increased during the early stage of 2 h of exposure and activated DNA damage in ARPE-19 cells after 8 h. Furthermore, autophagy was activated in response to blue light exposure at 24&ndash
    48 h. The zebrafish larvae model showed the unfavorable effect of blue light in prohibiting retinal tissue development. The RNA-Seq results confirmed that blue light induced cell death and participated in tissue growth inhibition and maturation. The current study reveals the mechanisms by which blue light induces cell death in a time-dependent manner. Moreover, both the in vivo and NGS data uncovered blue light&rsquo
    s effect on retinal tissue development, suggesting that exposing children to blue light could be relatively dangerous. These results could benefit the development of preventive strategies utilizing herbal medicine-based treatments for eye diseases or degeneration in the future.

    وصف الملف: application/pdf

  3. 3

    المصدر: OncoTargets and Therapy. 9:4773-4783

    الوصف: Armillaria mellea is a honey mushroom often used in the traditional Chinese medicine "Tianma". Currently, this medicinal mushroom is also used as a dietary supplement in numerous Western and Eastern countries. Armillarikin was isolated from A. mellea, and we previously discovered that it induced cytotoxicity in human leukemia cells. In this study, we further investigated the cytotoxicity of armillarikin against liver and intrahepatic bile duct cancer cells. Armillarikin was cytotoxic against human hepatocellular carcinoma Huh7, HA22T, and HepG2 cells based on the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium and alamarBlue(®) assays. Armillarikin treatment also induced the collapse of the mitochondrial transmembrane potential of these cells. Furthermore, armillarikin-induced apoptotic cell death was demonstrated by sub-G1 chromosomal DNA formation by using flow cytometry. In addition, the apoptosis was inhibited by the pan-caspase inhibitor, Z-VAD-fmk. Immunoblotting also revealed the armillarikin-induced activation of procaspase-3, -8, and -9 and upregulation of the apoptosis- and cell cycle arrest-related phospho-histones 2 and 3, respectively. Moreover, reactive oxygen species scavengers also inhibited the armillarikin-induced apoptosis in human hepatocellular carcinoma, suggesting that reactive oxygen species formation played an important role in the armillarikin-induced apoptosis of human hepatocellular carcinoma. In conclusion, our study indicates the potential of armillarikin as an effective agent for hepatoma or leukemia therapies.

  4. 4

    المصدر: Journal of Agricultural and Food Chemistry. 53:1776-1781

    الوصف: In this study, we examined the antitumor effect of marine algae extracts on human hepatoma and leukemia cells. Ethyl acetate extracts from Colpomenia sinuosa (Cs-EA), Halimeda discoidae (Hd-EA), and Galaxaura oblongata (Go-EA) directly inhibited the growth of human hepatoma HuH-7 cells and leukemia U937 and HL-60 cells in a time- and dose-dependent manner. Specifically, these algae extracts induced apoptosis of U937 and HL-60 cells as evaluated by detection of hypodiploid cells using flow cytometry and observation of condensed and fragmented nuclei in algae extract-treated cells. Intracellular reactive oxygen species (ROS), especially hydrogen peroxide and superoxide anion, were increased about 2-3-fold in U937 cells treated with Cs-EA for 3-5 h. Interestingly, antioxidant N-acetylcysteine effectively blocked Cs-EA-, Hd-EA-, and Go-EA-induced apoptosis, suggesting that ROS is a key mediator in the apoptotic signaling pathway. In conclusion, our results show that algae extracts induce apoptosis in human leukemia cells through generation of ROS.

  5. 5

    المصدر: Free radical biologymedicine. 42(7)

    الوصف: Lipid rafts are involved in many cell biology events, yet the molecular mechanisms on how rafts are formed are poorly understood. In this study we probed the possible requirement of reactive oxygen species (ROS) for T-cell receptor (TCR)-induced lipid raft formation. Microscopy and biochemical analyses illustrated that blockage of ROS production, by superoxide dismutase-mimic MnTBAP, significantly reduced partitioning of LAT, phospho-LAT, and PLC-gamma in lipid rafts. Another antioxidant N-acetylcysteine (NAC) displayed a similar suppressive effect on the entry of phospho-LAT into raft microdomains. The involvement of ROS in TCR-mediated raft assembly was observed in T-cell hybridomas, T leukemia cells, and normal T cells. Removal of ROS was accompanied by an attenuated activation of LAT and PKCtheta, with reduced production of IL-2. Consistently, treating T cells with the ROS-producer tert-butyl hydrogen peroxide (TBHP) greatly enhanced membrane raft formation, distribution of phospho-LAT into lipid rafts, and increased IL-2 production. Our results indicate for the first time that ROS contribute to TCR-induced membrane raft formation.

  6. 6

    المصدر: Journal of ethnopharmacology. 97(1)

    الوصف: Baizhu (Atractylodes macrocephala Koidz) has traditionally been used as an important ingredient of several Chinese herbal medicines, which have been used for abdominal pain and gastroenterology diseases for thousands of years. Despite its popularity in herbal therapies, little is known about the anticancer effect of Baizhu. In this study, the anticancer potential of Baizhu on human hepatoma and leukemia cell lines was evaluated. Baizhu methanol extract induced apoptosis in human lymphoma Jurkat T cells, leukemia U937, and HL-60 cells. This was confirmed by several methods, including hypodiploid cells detection using flow cytometry, the examination of apoptotic bodies containing cells using confocal laser scanning microscopy, and hypodiploid cell population inhibition using the broad spectrum caspase inhibitor z-VAD. Finally, the intracellular reactive oxygen species (ROS), especially hydrogen peroxide (H(2)O(2)) and superoxide anion (O(2)(-)), were found to be elevated after treatment of these cells with Baizhu extracts. Antioxidant N-acetyl cysteine (NAC) pretreatment almost completely inhibited Baizhu-induced apoptosis, suggesting that ROS are the key mediators for Baizhu-induced apoptosis. All these data indicate that Baizhu is a possible anti-tumor agent that induces apoptosis of human leukemia cells through ROS generation.