يعرض 1 - 10 نتائج من 123 نتيجة بحث عن '"Phase-amplitude coupling"', وقت الاستعلام: 1.46s تنقيح النتائج
  1. 1
    دورية أكاديمية

    المصدر: Brain Stimulation, Vol 17, Iss 3, Pp 660-667 (2024)

    الوصف: Background: Phase synchronization over long distances underlies inter-areal communication and importantly, modulates the flow of information processing to adjust to cognitive demands. Objective: This study investigates the impact of single-session, cross-frequency (Alpha-Gamma) bifocal transcranial alternating current stimulation (cf-tACS) to the cortical visual motion network on inter-areal coupling between the primary visual cortex (V1) and the medio-temporal area (MT) and on motion direction discrimination. Methods: Based on the well-established phase-amplitude coupling (PAC) mechanism driving information processing in the visual system, we designed a novel directionally tuned cf-tACS protocol. Directionality of information flow was inferred from the area receiving low-frequency tACS (e.g., V1) projecting onto the area receiving high-frequency tACS (e.g., MT), in this case, promoting bottom-up information flow (Forward-tACS). The control condition promoted the opposite top-down connection (from MT to V1, called Backward-tACS), both compared to a Sham-tACS condition. Task performance and EEG activity were recorded from 45 young healthy subjects. An additional cohort of 16 stroke patients with occipital lesions and impairing visual processing was measured to assess the influence of a V1 lesion on the modulation of V1-MT coupling. Results: The results indicate that Forward cf-tACS successfully modulated bottom-up PAC (V1 α-phase-MT ɣ-amplitude) in both cohorts, while producing opposite effects on the reverse MT-to-V1 connection. Backward-tACS did not change V1-MT PAC in either direction in healthy participants but induced a slight decrease in bottom-up PAC in stroke patients. However, these changes in inter-areal coupling did not translate into cf-tACS-specific behavioural improvements. Conclusions: Single session cf-tACS can alter inter-areal coupling in intact and lesioned brains but is probably not enough to induce longer-lasting behavioural effects in these cohorts. This might suggest that a longer daily visual training protocol paired with tACS is needed to unveil the relationship between externally applied oscillatory activity and behaviourally relevant brain processing.

    وصف الملف: electronic resource

  2. 2
    دورية أكاديمية

    المصدر: Frontiers in Neuroscience, Vol 18 (2024)

    الوصف: ObjectiveThis study aimed to determine whether patients with disorders of consciousness (DoC) could experience neural entrainment to individualized music, which explored the cross-modal influences of music on patients with DoC through phase-amplitude coupling (PAC). Furthermore, the study assessed the efficacy of individualized music or preferred music (PM) versus relaxing music (RM) in impacting patient outcomes, and examined the role of cross-modal influences in determining these outcomes.MethodsThirty-two patients with DoC [17 with vegetative state/unresponsive wakefulness syndrome (VS/UWS) and 15 with minimally conscious state (MCS)], alongside 16 healthy controls (HCs), were recruited for this study. Neural activities in the frontal–parietal network were recorded using scalp electroencephalography (EEG) during baseline (BL), RM and PM. Cerebral-acoustic coherence (CACoh) was explored to investigate participants’ abilitiy to track music, meanwhile, the phase-amplitude coupling (PAC) was utilized to evaluate the cross-modal influences of music. Three months post-intervention, the outcomes of patients with DoC were followed up using the Coma Recovery Scale-Revised (CRS-R).ResultsHCs and patients with MCS showed higher CACoh compared to VS/UWS patients within musical pulse frequency (p = 0.016, p = 0.045; p

    وصف الملف: electronic resource

  3. 3
    دورية أكاديمية

    المؤلفون: Sebastian H. Heesen, Georg Köhr

    المصدر: Frontiers in Cellular Neuroscience, Vol 18 (2024)

    الوصف: This mini review investigates the importance of GABAergic interneurons for the network function of human-induced pluripotent stem cells (hiPSC)-derived brain organoids. The presented evidence suggests that the abundance, diversity and three-dimensional cortical organization of GABAergic interneurons are the primary elements responsible for the creation of synchronous neuronal firing patterns. Without intricate inhibition, coupled oscillatory patterns cannot reach a sufficient complexity to transfer spatiotemporal information constituting physiological network function. Furthermore, human-specific brain network function seems to be mediated by a more complex and interconnected inhibitory structure that remains developmentally flexible for a longer period when compared to rodents. This suggests that several characteristics of human brain networks cannot be captured by rodent models, emphasizing the need for model systems like organoids that adequately mimic physiological human brain function in vitro.

    وصف الملف: electronic resource

  4. 4
    دورية أكاديمية

    المصدر: Brain Research Bulletin, Vol 209, Iss , Pp 110911- (2024)

    الوصف: Bradykinesia, a debilitating symptom characterized by impaired movement initiation and reduced speed in Parkinson’s disease (PD), is associated with abnormal oscillatory activity in the motor cortex-basal ganglia circuit. We investigated the interplay between abnormal beta and gamma oscillations in relation to bradykinesia in parkinsonian rats. Our findings showed reduced movement activities in parkinsonian rats, accompanied by enhanced high beta oscillations in the motor cortex, which are closely associated with movement transitional difficulties. Additionally, gamma oscillations correlated with movement velocity in control rats but not in parkinsonian rats. We observed selective coupling between high beta oscillation phase and gamma oscillation amplitude in PD, as well as cortical high beta-broadband gamma phase-amplitude coupling (PAC) negatively influencing locomotor activities in control and PD rats. These findings suggest a collaborative role of cortical beta and gamma oscillations in facilitating movement execution, with beta oscillations being linked to movement initiation and gamma oscillations associated with movement speed. Importantly, the aberrant alterations of these oscillations are closely related to the development of bradykinesia. Furthermore, PAC hold promise as a biomarker for comprehensive assessment of movement performance in PD.

    وصف الملف: electronic resource

  5. 5
    دورية أكاديمية

    المصدر: NeuroImage, Vol 289, Iss , Pp 120535- (2024)

    الوصف: Neurovascular coupling serves as an essential neurophysiological mechanism in functional neuroimaging, which is generally presumed to be robust and invariant across different physiological states, encompassing both task engagement and resting state. Nevertheless, emerging evidence suggests that neurovascular coupling may exhibit state dependency, even in normal human participants. To investigate this premise, we analyzed the cross-frequency spectral correspondence between concurrently recorded electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) data, utilizing them as proxies for neurovascular coupling during the two conditions: an eye-open-eye-close (EOEC) task and a resting state. We hypothesized that given the state dependency of neurovascular coupling, EEG-fMRI spectral correspondences would change between the two conditions in the visual system. During the EOEC task, we observed a negative phase-amplitude-coupling (PAC) between EEG alpha-band and fMRI visual activity. Conversely, in the resting state, a pronounced amplitude-amplitude-coupling (AAC) emerged between EEG and fMRI signals, as evidenced by the spectral correspondence between the EEG gamma-band of the midline occipital channel (Oz) and the high-frequency fMRI signals (0.15–0.25 Hz) in the visual network. This study reveals distinct scenarios of EEG-fMRI spectral correspondence in healthy participants, corroborating the state-dependent nature of neurovascular coupling.

    وصف الملف: electronic resource

  6. 6
    دورية أكاديمية

    المصدر: Journal of Integrative Neuroscience, Vol 23, Iss 5, p 97 (2024)

    الوصف: Background: To explore the time-frequency structure and cross-scale coupling of electroencephalography (EEG) signals during seizure in juvenile myoclonic epilepsy (JME), correlations between different leads, as well as dynamic evolution in epileptic discharge, progression and end of seizure were examined. Methods: EEG data were obtained for 10 subjects with JME and 10 normal controls and were decomposed using gauss continuous wavelet transform (CWT). The phase amplitude coupling (PAC) relationship between the 11th (4.57 Hz) and 17th (0.4 Hz) scale was investigated. Correlations were examined between the 11th and 17th scale EEG signals in different leads during seizure, using multi-scale cross correlation analysis. Results: The time-frequency structure of JME subjects showed strong rhythmic activity in the 11th and 17th scales and a close PAC was identified. Correlation analysis revealed that the ictal JME correlation first increased in the anterior head early in seizure and gradually expanded to the posterior head. Conclusion: PAC was exhibited between the 11th and 17th scales during JME seizure. The results revealed that the correlation in the anterior leads was higher than the posterior leads. In the perictal period, the 17th scale EEG signal preceded the 11th scale signal and remained for some time after a seizure. This suggests that the 17th scale signal may play an important role in JME seizure.

    وصف الملف: electronic resource

  7. 7
    دورية أكاديمية

    المصدر: Frontiers in Neuroscience, Vol 17 (2023)

    الوصف: Different sleep stages have been shown to be vital for a variety of brain functions, including learning, memory, and skill consolidation. However, our understanding of neural dynamics during sleep and the role of prominent LFP frequency bands remain incomplete. To elucidate such dynamics and differences between behavioral states we collected multichannel LFP and spike data in primary motor cortex of unconstrained macaques for up to 24 h using a head-fixed brain-computer interface (Neurochip3). Each 8-s bin of time was classified into awake-moving (Move), awake-resting (Rest), REM sleep (REM), or non-REM sleep (NREM) by using dimensionality reduction and clustering on the average spectral density and the acceleration of the head. LFP power showed high delta during NREM, high theta during REM, and high beta when the animal was awake. Cross-frequency phase-amplitude coupling typically showed higher coupling during NREM between all pairs of frequency bands. Two notable exceptions were high delta-high gamma and theta-high gamma coupling during Move, and high theta-beta coupling during REM. Single units showed decreased firing rate during NREM, though with increased short ISIs compared to other states. Spike-LFP synchrony showed high delta synchrony during Move, and higher coupling with all other frequency bands during NREM. These results altogether reveal potential roles and functions of different LFP bands that have previously been unexplored.

    وصف الملف: electronic resource

  8. 8
    دورية أكاديمية

    المصدر: Journal of Integrative Neuroscience, Vol 23, Iss 2, p 33 (2024)

    الوصف: Background: Emotions are thought to be related to distinct patterns of neural oscillations, but the interactions among multi-frequency neural oscillations during different emotional states lack full exploration. Phase-amplitude coupling is a promising tool for understanding the complexity of the neurophysiological system, thereby playing a crucial role in revealing the physiological mechanisms underlying emotional electroencephalogram (EEG). However, the non-sinusoidal characteristics of EEG lead to the non-uniform distribution of phase angles, which could potentially affect the analysis of phase-amplitude coupling. Removing phase clustering bias (PCB) can uniform the distribution of phase angles, but the effect of this approach is unknown on emotional EEG phase-amplitude coupling. This study aims to explore the effect of PCB on cross-frequency phase-amplitude coupling for emotional EEG. Methods: The technique of removing PCB was implemented on a publicly accessible emotional EEG dataset to calculate debiased phase-amplitude coupling. Statistical analysis and classification were conducted to compare the difference in emotional EEG phase-amplitude coupling prior to and post the removal of PCB. Results: Emotional EEG phase-amplitude coupling values are overestimated due to PCB. Removing PCB enhances the difference in coupling strength between fear and happy emotions in the frontal lobe. Comparable emotion recognition performance was achieved with fewer features after removing PCB. Conclusions: These findings suggest that removing PCB enhances the difference in emotional EEG phase-amplitude coupling patterns and generates features that contain more emotional information. Removing PCB may be advantageous for analyzing emotional EEG phase-amplitude coupling and recognizing human emotions.

    وصف الملف: electronic resource

  9. 9
    دورية أكاديمية

    المصدر: Frontiers in Aging Neuroscience, Vol 15 (2023)

    الوصف: IntroductionElectroencephalographic (EEG) abnormalities are seen in patients with Alzheimer’s disease (AD) and mild cognitive impairment (MCI) with characteristic features of cognitive impairment. The most common findings of EEG features in AD and MCI patients are increased relative power of slow oscillations (delta and theta rhythms) and decreased relative power of fast oscillations (alpha, beta and gamma rhythms). However, impairments in cognitive processes in AD and MCI are not sufficiently reflected by brain oscillatory activity in a particular frequency band. MCI patients are at high risk of progressing to AD. Cross-frequency coupling (CFC), which refers to coupling between different frequency bands, is a crucial tool for comprehending changes in brain oscillations and cognitive performance. CFC features exhibit some specificity in patients with AD and MCI, but a comparison between CFC features in individuals with these disorders is still lacking. The aim of this study was to explore changes in CFC properties in MCI and AD and to explore the relationship between CFC properties and multiple types of cognitive functional performance.MethodsWe recorded resting-state EEG (rsEEG) signals in 46 MCI patients, 43 AD patients, and 43 cognitively healthy controls (HCs) and analyzed the changes in CFC as well as the relationship between CFC and scores on clinical tests of cognitive function.Results and discussionMultiple couplings between low-frequency oscillations and high-frequency oscillations were found to be significantly enhanced in AD patients compared to those of HCs and MCI, while delta-gamma as well as theta-gamma couplings in the right temporal and parietal lobes were significantly enhanced in MCI patients compared to HCs. Moreover, theta-gamma coupling in the right temporal lobe tended to be stronger in MCI patients than in HCs, and it was stronger in AD than in MCI. Multiple CFC properties were found to correlate significantly with various cognitive domains, especially the memory function domain. Overall, these findings suggest that AD and MCI patients must use more neural resources to maintain a resting brain state and that alterations in theta-gamma coupling in the temporal lobe become progressively obvious during disease progression and are likely to be a valuable indicator of MCI and AD pathology.

    وصف الملف: electronic resource

  10. 10
    دورية أكاديمية

    المصدر: Frontiers in Systems Neuroscience, Vol 17 (2023)

    الوصف: IntroductionParkinson’s disease (PD) is a neurodegenerative disorder affecting the whole brain, leading to several motor and non-motor symptoms. In the past, it has been shown that PD alters resting state networks (RSN) in the brain. These networks are usually derived from fMRI BOLD signals. This study investigated RSN changes in PD patients based on maximum phase-amplitude coupling (PAC) throughout the cortex. We also tested the hypothesis that levodopa medication shifts network activity back toward a healthy state.MethodsWe recorded 23 PD patients and 24 healthy age-matched participants for 30 min at rest with magnetoencephalography (MEG). PD patients were measured once in the dopaminergic medication ON and once in the medication OFF state. A T1-MRI brain scan was acquired from each participant for source reconstruction. After correcting the data for artifacts and performing source reconstruction using a linearly constrained minimum variance beamformer, we extracted visual, sensorimotor (SMN), and frontal RSNs based on PAC.ResultsWe found significant changes in all networks between healthy participants and PD patients in the medication OFF state. Levodopa had a significant effect on the SMN but not on the other networks. There was no significant change in the optimal PAC coupling frequencies between healthy participants and PD patients.DiscussionOur results suggest that RSNs, based on PAC in different parts of the cortex, are altered in PD patients. Furthermore, levodopa significantly affects the SMN, reflecting the clinical alleviation of motor symptoms and leading to a network normalization compared to healthy controls.

    وصف الملف: electronic resource