يعرض 1 - 10 نتائج من 51 نتيجة بحث عن '"Ploidy Level"', وقت الاستعلام: 0.89s تنقيح النتائج
  1. 1
  2. 2
    دورية أكاديمية
  3. 3
    دورية أكاديمية

    المساهمون: Organismal and Evolutionary Biology Research Programme, Biosciences, Helsinki Institute of Urban and Regional Studies (Urbaria)

    وصف الملف: application/pdf

    العلاقة: This work was supported by International Postdoctoral Exchange Fellowship Program of China Postdoctoral Science Foundation (to CW), the National Natural Science Foundation of China (Grant Nos. 31970347 and 31770361 to WG), Forestry Science and Technology Innovation Program of Shandong Province (No. 2019LY010 to WG), and National Natural Science Foundation of China (No. 31800299 to TW).; Wang , C , Wang , T , Yin , M , Eller , F , Liu , L , Brix , H & Guo , W 2021 , ' Transcriptome Analysis of Tetraploid and Octoploid Common Reed (Phragmites australis) ' , Frontiers in plant science , vol. 12 , 653183 . https://doi.org/10.3389/fpls.2021.653183Test; ORCID: /0000-0003-2916-3922/work/95498683; c33eb906-0981-4aec-8952-67c44db7937c; http://hdl.handle.net/10138/330942Test; 000651882900001

  4. 4
    دورية أكاديمية
  5. 5
    دورية أكاديمية
  6. 6
  7. 7
    دورية أكاديمية

    المصدر: Collectanea Botanica; Vol. 40 (2021); e004 ; 1989-1067 ; 0010-0730 ; 10.3989/collectbot.2021.v40

    وصف الملف: text/html; application/pdf; text/xml

    العلاقة: https://collectaneabotanica.revistas.csic.es/index.php/collectaneabotanica/article/view/300/445Test; https://collectaneabotanica.revistas.csic.es/index.php/collectaneabotanica/article/view/300/446Test; https://collectaneabotanica.revistas.csic.es/index.php/collectaneabotanica/article/view/300/447Test; Bancheva, S. & Greilhuber, J. 2006. Genome size in Bulgarian Centaurea s.l. (Asteraceae). Plant Systematics and Evolution 257: 95-117. https://doi.org/10.1007/s00606-005-0384-7Test; Barres, L., Sanmartín, I., Anderson, C. L., Susanna, A., Buerki, S., Galbany-Casals, M. & Vilatersana, R. 2013. Reconstructing the evolution and biogeographic history of tribe Cardueae (Compositae). American Journal of Botany 100: 867-882. https://doi.org/10.3732/ajb.1200058Test PMid:23624927; Bureš, P., Wang, Y.-F., Horová, L. & Suda, J. 2004. Genome size variation in central European species of Cirsium (Compositae) and their natural hybrids. Annals of Botany 94: 353-363. https://doi.org/10.1093/aob/mch151Test PMid:15292040 PMCid:PMC4242176; Chrtek, Jr. J., Zahradniček, J., Krak, K. & Fehrer, J. 2009. Genome size in Hieracium subgenus Hieracium (Asteraceae) is strongly correlated with major phylogenetic groups. Annals of Botany 104: 161-178. https://doi.org/10.1093/aob/mcp107Test PMid:19433417 PMCid:PMC2706716; Darriba, D., Taboada, G. L., Doallo, R. & Posada, D. 2012. jModelTest 2: more models, new heuristics and parallel computing. Nature Methods 9: 772. https://doi.org/10.1038/nmeth.2109Test PMid:22847109 PMCid:PMC4594756; Doležel, J., Bartos, J., Voglmayr, H. & Greilhuber, J. 2003. Nuclear DNA content and genome size of trout and human. Cytometry 51A: 127-128. https://doi.org/10.1002/cyto.a.10013Test PMid:12541287; Doležel, J., Binarová, P. & Lucretti, S. 1989. Analysis of nuclear DNA content in plant cells by flow cytometry. Biologia Plantarum 3: 113-120. https://doi.org/10.1007/BF02907241Test; Garcia, S., Canela M. Á., Garnatje, T., McArthur, E. D., Pellicer, J., Sanderson, S. C. & Vallès, J. 2008. Evolutionary and ecological implications of genome size in the North American endemic sagebrushes and allies (Artemisia, Asteraceae). Biological Journal of the Linnean Society 94: 631-649. https://doi.org/10.1111/j.1095-8312.2008.01001.xTest; Garcia, S., Garnatje, T., Twibell, J. D. & Vallès, J. 2006. Genome size variation in the Artemisia arborescens complex (Asteraceae, Anthemideae) and its cultivars. Genome 49: 244-253. https://doi.org/10.1139/g05-105Test PMid:16604107; Garnatje, T., Garcia, S. & Canela, M. Á. 2007. Genome size variation from a phylogenetic perspective in the genus Cheirolophus Cass. (Asteraceae): biogeographic implications. Plant Systematics and Evolution 264: 117-134. https://doi.org/10.1007/s00606-006-0489-7Test; Garnatje, T., Garcia, S., Vilatersana, R. & Vallès, J. 2006. Genome size variation in the genus Carthamus (Asteraceae, Cardueae): Systematic implications and additive changes during allopolyploidization. Annals of Botany 97: 461-467. https://doi.org/10.1093/aob/mcj050Test PMid:16390843 PMCid:PMC2803645; Greuter, W. 2003. The Euro+Med treatment of Cardueae (Compositae) - generic concepts and required new names. Willdenowia 33: 49-61. https://doi.org/10.3372/wi.33.33104Test; Hall, T. A. 1999. BioEdit, A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41: 95-98.; Hidalgo, O., Garcia-Jacas, N., Garnatje, T., Romashchenko, K., Susanna, A. & Siljak-Yakovlev, S. 2008. Extreme environmental conditions and phylogenetic inheritance: systematics of Myopordon and Oligochaeta (Asteraceae, Cardueae-Centaureinae). Taxon 57: 769-778. https://doi.org/10.1002/tax.573009Test; Hidalgo, O., Vitales, D., Vallès, J., Garnatje, T., Siljak-Yakovlev, S., Leitch, I. J. & Pellicer J. 2017. Cytogenetic insights into an oceanic island radiation: The dramatic evolution of pre-existing traits in Cheirolophus (Asteraceae: Cardueae: Centaureinae). Taxon 66: 146-157. https://doi.org/10.12705/661.8Test; Kapralov, M. V. & Filatov, D. A. 2011. Does large genome size limit speciation in endemic island floras? Journal of Botany 2011: 458684. https://doi.org/10.1155/2011/458684Test; Leitch, I. J. & Bennett, M. D. 2004. Genome downsizing in polyploid plants. Biological Journal of the Linnean Society 82: 651-663. https://doi.org/10.1111/j.1095-8312.2004.00349.xTest; López González, G. 1990. Acerca de la clasificación natural del género Carthamus L., s.l. Anales del Jardín Botánico de Madrid 47: 11-34.; López González, G. 2012. Sobre la clasificación del complejo Carthamus-Carduncellus (Asteraceae, Cardueae-Centaureinae) y su tratamiento en Flora iberica. Acta Botanica Malacitana 37: 79-92. https://doi.org/10.24310/abm.v37i0.2669Test; Pegoraro, L., Baker, E. C., Aeschimann, D., Balant, M., Douzet, R., Garnatje, T., Guignard, M. S., Leitch, I. J., Leitch, A. R., Palazzesi, L., Theurillat, J. P., Hidalgo, O. & Pellicer, J. 2020. The correlation of phylogeny, elevation and ploidy on the incidence of apomixis in Asteraceae of the European Alps. Botanical Journal of the Linnean Society 194: 410-422. https://doi.org/10.1093/botlinnean/boaa058Test; Pellicer, J., Garcia, S., Canela, M. Á., Garnatje, T., Korobkov, A. A., Twibell, J. D. & Vallès, J. 2010. Genome size dynamics in Artemisia L. (Asteraceae): following the track of polyploidy. Plant Biology 12: 820-830. https://doi.org/10.1111/j.1438-8677.2009.00268.xTest PMid:20701707; Pellicer, J., Hidalgo, O., Garnatje, T., Kondo, K. & Vallès, J. 2014. Life cycle versus systematic placement: phylogenetic and cytogenetic studies in annual Artemisia (Asteraceae, Anthemideae). Turkish Journal of Botany 38: 1112-1122. https://doi.org/10.3906/bot-1404-102Test; Pellicer, J. & Leitch, I. J. 2020. The Plant DNA C-values database (release 7.1): an updated online repository of plant genome size data for comparative studies. New Phytologist 226: 301-305. https://doi.org/10.1111/nph.16261Test PMid:31608445; Pires, J. C., Lim, K. Y., Kovařík, A., Matyásek, R., Boyd, A., Leitch, A. R., Leitch, I. J., Bennett, M. D., Soltis, P. S. & Soltis, D. E. 2004. Molecular cytogenetic analysis of recently evolved Tragopogon (Asteraceae) allopolyploids reveal a karyotype that is additive of the diploid progenitors. American Journal of Botany 91: 1022-1035. https://doi.org/10.3732/ajb.91.7.1022Test PMid:21653458; Qiu, F., Baack, E. J., Whitney, K. D., Bock, D. G., Tetreault, H. M., Rieseberg, L. H. & Ungerer, M. C. 2019. Phylogenetic trends and environmental correlates of nuclear genome size variation in Helianthus sunflowers. New Phytologist 221: 1609-1618. https://doi.org/10.1111/nph.15465Test PMid:30368824; R Core Team 2016. R: a language and environment for statistical computing. Foundation for Statistical Computing, Vienna. Version 3.6.2. Retrieved December 12, 2019, from http://www.R-project.orgTest; Revell, L. J. 2012. phytools: an R package for phylogenetic comparative biology (and other things). Methods in Ecology and Evolution 3: 217-223. https://doi.org/10.1111/j.2041-210X.2011.00169.xTest; Rice, A., Glick, L., Abadi, S., Einhorn, M., Kopelman, N. M., Salman-Minkov, A., Mayzel, J., Chay, O. & Mayrose, I. 2015. The Chromosome Counts Database (CCDB) - a community resource of plant chromosome numbers. New Phytologist 206: 19-26. Retrieved October 2, 2020, from http://ccdb.tau.ac.ilTest/ https://doi.org/10.1111/nph.13191Test PMid:25423910; Ronquist, F., Teslenko, M., Mark, P., Ayres, D., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M. A. & Huelsenbeck, J. P. 2012. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61: 539-542. https://doi.org/10.1093/sysbio/sys029Test PMid:22357727 PMCid:PMC3329765; Siljak-Yakovlev, S., Godelle, B., Zoldos, V., Vallès, J., Garnatje, T. & Hidalgo, O. 2017. Evolutionary implications of heterochromatin and rDNA in chromosome number and genome size changes during dysploidy: A case study in Reichardia genus. PLoS ONE 12: e0182318. https://doi.org/10.1371/journal.pone.0182318Test PMid:28792980 PMCid:PMC5549912; Suda, J., Krahulcová, A., Trávnícek, P., Rosenbaumová, R., Peckert, T. & Krahulec, F. 2007. Genome size variation and species relationships in Hieracium sub-genus Pilosella (Asteraceae) as inferred by flow cytometry. Annals of Botany 100: 1323-1335. https://doi.org/10.1093/aob/mcm218Test PMid:17921526 PMCid:PMC2759259; Suda, J., Kyncl, T. & Freiova, R. 2003. Nuclear DNA amounts in Macaronesian angiosperms. Annals of Botany 92: 153-164. https://doi.org/10.1093/aob/mcg104Test PMid:12824074 PMCid:PMC4243629; Torrell, M. & Vallès, J. 2001. Genome size in 21 Artemisia L. species (Asteraceae, Anthemideae): Systematic, evolutionary, and ecological implications. Genome 44: 231-238. https://doi.org/10.1139/gen-44-2-231Test PMid:11341733; Trávníček, P., Kirschner, J., Chudáčková, H., Rooks, F. & Štěpánek, J. 2013. Substantial genome size variation in Taraxacum stenocephalum (Asteraceae, Lactuceae). Folia Geobotanica 48: 271-284. https://doi.org/10.1007/s12224-013-9151-7Test; Vallès, J., Canela, M. Á., Garcia, S., Hidalgo, O., Pellicer, J., Sánchez-Jiménez, I., Siljak-Yakovlev, S., Vitales, D. & Garnatje, T. 2013. Genome size variation and evolution in the family Asteraceae. Caryologia 66: 221-235. https://doi.org/10.1080/00087114.2013.829690Test; Vilatersana, R. 2002. Delimitació genèrica del complex Carthamus-Carduncellus: un assaig de biosistemàtica i sistemàtica molecular. PhD Thesis, Universitat de Barcelona, Barcelona.; Vilatersana, R., Brysting, A. K. & Brochmann, C. 2007. Molecular evidence for hybrid origins of the invasive polyploids Carthamus creticus and C. turkestanicus (Cardueae, Asteraceae). Molecular Phylogenetics and Evolution 44: 610-621. https://doi.org/10.1016/j.ympev.2007.05.008Test PMid:17591447; Vilatersana, R., Susanna, A., Garcia-Jacas, N. & Garnatje, T. 2000a. Generic delimitation and phylogeny of the Carduncellus-Carthamus complex (Asteraceae) based on ITS sequences. Plant Systematics and Evolution 221: 89-105. https://doi.org/10.1007/BF01086383Test; Vilatersana, R., Susanna, A., Garcia-Jacas, N. & Garnatje, T. 2000b. Karyology, generic delineation and dysploidy in the genera Carduncellus, Carthamus and Phonus (Asteraceae). Botanical Journal of the Linnean Society 134: 425-438. https://doi.org/10.1111/j.1095-8339.2000.tb00539.xTest; Vitales, D., Álvarez, I., Garcia, S., Hidalgo, O., Nieto Feliner, G., Pellicer, J., Vallès, J. & Garnatje, T. 2020. Genome size variation at constant chromosome number is not correlated with repetitive DNA dynamism in Anacyclus (Asteraceae). Annals of Botany 125: 611-623. https://doi.org/10.1093/aob/mcz183Test PMid:31697800 PMCid:PMC7103019; Vitales, D., Fernández, P., Garnatje, T. & Garcia, S. 2019. Progress in the study of genome size evolution in Asteraceae: analysis of the last update. Database 2019: baz098. https://doi.org/10.1093/database/baz098Test PMid:31608375 PMCid:PMC6790504; Wickham, H. 2016. ggplot2: elegant graphics for data analysis. Springer, New York. https://doi.org/10.1007/978-3-319-24277-4_9Test; Zahradníček, J., Chrtek, J., Ferreira, M. Z., Krahulcová, A. & Fehrer, J. 2018. Genome size variation in the genus Andryala (Hieraciinae, Asteraceae). Folia Geobotanica 53: 429-447. https://doi.org/10.1007/s12224-018-9330-7Test; https://collectaneabotanica.revistas.csic.es/index.php/collectaneabotanica/article/view/300Test

  8. 8
    دورية أكاديمية

    المساهمون: Ecologie Systématique et Evolution (ESE), AgroParisTech-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Sorbonne Université (SU), Institut de Biologie Intégrative de la Cellule (I2BC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Cytométrie (CYTO), Département Plateforme (PF I2BC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut de Biologie Intégrative de la Cellule (I2BC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Ecosystèmes, biodiversité, évolution Rennes (ECOBIO), Université de Rennes (UR)-Institut Ecologie et Environnement - CNRS Ecologie et Environnement (INEE-CNRS), Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Rennes (OSUR), Université de Rennes (UR)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Centre National de la Recherche Scientifique (CNRS), Supported by the French Polar Institute (IPEV). This research was also supported by CNRS IRP grant “AntarctPlantAdapt” (F. Hennion)., IPEV 1116 PlantEvol

    المصدر: ISSN: 0722-4060.

  9. 9
    دورية أكاديمية
  10. 10
    دورية أكاديمية