دورية أكاديمية

Inactivation of common airborne antigens by perfluoroalkyl chemicals modulates early life allergic asthma.

التفاصيل البيبلوغرافية
العنوان: Inactivation of common airborne antigens by perfluoroalkyl chemicals modulates early life allergic asthma.
المؤلفون: Mengjing Wang, Qianqian Li, Meifang Hou, Chan, Louisa L. Y., Meng Liu, Ter, Soo Kai, Ting Dong, Yun Xia, Chotirmall, Sanjay H., Mingliang Fang
المصدر: Proceedings of the National Academy of Sciences of the United States of America; 6/15/2021, Vol. 118 Issue 24, p1-11, 11p
مصطلحات موضوعية: ASTHMA, PEDIATRIC respiratory diseases, HOUSE dust mites, COMMERCIAL products, POLLUTANTS, ANTIGENS, ALKYLBENZENE sulfonates
مستخلص: Allergic asthma, driven by T helper 2 cell-mediated immune responses to common environmental antigens, remains the most common respiratory disease in children. Perfluorinated chemicals (PFCs) are environmental contaminants of great concern, because of their wide application, persistence in the environment, and bioaccumulation. PFCs associate with immunological disorders including asthma and attenuate immune responses to vaccines. The influence of PFCs on the immunological response to allergens during childhood is unknown. We report here that a major PFC, perfluorooctane sulfonate (PFOS), inactivates house dust mite (HDM) to dampen 5-wk-old, early weaned mice from developing HDMinduced allergic asthma. PFOS further attenuates the asthma protective effect of the microbial product lipopolysaccharide (LPS). We demonstrate that PFOS prevents desensitization of lung epithelia by LPS, thus abolishing the latter’s protective effect. A close mechanistic study reveals that PFOS specifically binds the major HDM allergen Der p1 with high affinity as well as the lipid A moiety of LPS, leading to the inactivation of both antigens. Moreover, PFOS at physiological human (nanomolar) concentrations inactivates Der p1 from HDM and LPS in vitro, although higher doses did not cause further inactivation because of possible formation of PFOS aggregates. This PFOS-induced neutralization of LPS has been further validated in primary human cell models and extended to an in vivo bacterial infection mouse model. This study demonstrates that early life exposure of mice to a PFC blunts airway antigen bioactivity to modulate pulmonary inflammatory responses, which may adversely affect early pulmonary health. [ABSTRACT FROM AUTHOR]
Copyright of Proceedings of the National Academy of Sciences of the United States of America is the property of National Academy of Sciences and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
قاعدة البيانات: Complementary Index
الوصف
تدمد:00278424
DOI:10.1073/pnas.2011957118