يعرض 1 - 4 نتائج من 4 نتيجة بحث عن '"Herrera, James P."', وقت الاستعلام: 0.91s تنقيح النتائج
  1. 1
    دورية أكاديمية
  2. 2
    دورية أكاديمية

    المؤلفون: Herrera, James P

    الوصف: Biodiversity arises from the balance between speciation and extinction. Fossils record the origins and disappearance of organisms, and the branching patterns of molecular phylogenies allow estimation of speciation and extinction rates, but the patterns of diversification are frequently incongruent between these two data sources. I tested two hypotheses about the diversification of primates based on ∼600 fossil species and 90% complete phylogenies of living species: (1) diversification rates increased through time; (2) a significant extinction event occurred in the Oligocene. Consistent with the first hypothesis, analyses of phylogenies supported increasing speciation rates and negligible extinction rates. In contrast, fossils showed that while speciation rates increased, speciation and extinction rates tended to be nearly equal, resulting in zero net diversification. Partially supporting the second hypothesis, the fossil data recorded a clear pattern of diversity decline in the Oligocene, although diversification rates were near zero. The phylogeny supported increased extinction ∼34 Ma, but also elevated extinction ∼10 Ma, coinciding with diversity declines in some fossil clades. The results demonstrated that estimates of speciation and extinction ignoring fossils are insufficient to infer diversification and information on extinct lineages should be incorporated into phylogenetic analyses.

    وصف الملف: application/pdf

    العلاقة: Evolution; international journal of organic evolution; https://hdl.handle.net/10161/24346Test

  3. 3
    دورية أكاديمية

    المؤلفون: Herrera, James P.1,2 jherrera@amnh.org

    المصدر: Evolution. Dec2017, Vol. 71 Issue 12, p2845-2857. 13p.

    مصطلحات موضوعية: *PRIMATES, *BIODIVERSITY, *PHYLOGENY, *FOSSILS, *MACROEVOLUTION

    مستخلص: Biodiversity arises from the balance between speciation and extinction. Fossils record the origins and disappearance of organisms, and the branching patterns of molecular phylogenies allow estimation of speciation and extinction rates, but the patterns of diversification are frequently incongruent between these two data sources. I tested two hypotheses about the diversification of primates based on ∼600 fossil species and 90% complete phylogenies of living species: (1) diversification rates increased through time; (2) a significant extinction event occurred in the Oligocene. Consistent with the first hypothesis, analyses of phylogenies supported increasing speciation rates and negligible extinction rates. In contrast, fossils showed that while speciation rates increased, speciation and extinction rates tended to be nearly equal, resulting in zero net diversification. Partially supporting the second hypothesis, the fossil data recorded a clear pattern of diversity decline in the Oligocene, although diversification rates were near zero. The phylogeny supported increased extinction ∼34 Ma, but also elevated extinction ∼10 Ma, coinciding with diversity declines in some fossil clades. The results demonstrated that estimates of speciation and extinction ignoring fossils are insufficient to infer diversification and information on extinct lineages should be incorporated into phylogenetic analyses. [ABSTRACT FROM AUTHOR]

  4. 4
    دورية أكاديمية

    المصدر: American Journal of Physical Anthropology; Mar2012, Vol. 147 Issue 3, p401-408, 8p

    مستخلص: We tested four major hypotheses on the ecological aspects of body mass variation in extant Malagasy strepsirrhines: thermoregulation, resource seasonality/scarcity, resource quality, and primary productivity. These biogeographic hypotheses focus on the ecological aspects of body mass variation, largely ignoring the role of phylogeny for explaining body mass variation within lineages. We tested the independent effects of climate and resource-related variables on variation in body mass among Malagasy primates using recently developed comparative methods that account for phylogenetic history and spatial autocorrelation. We extracted data on lemur body mass and climate variables for a total of 43 species from 39 sites. Climatic data were obtained from the WorldClim database, which is based on climate data from weather stations compiled around the world. Using generalized linear models that incorporate parameters to account for phylogenetic and spatial autocorrelation, we found that diet and climate variables were weak predictors of lemur body mass. Moreover, there was a strong phylogenetic effect relative to the effects of space on lemur body mass in all models. Thus, we failed to find support for any of the four hypotheses on patterns of geography and body mass in extant strepsirrhines. Our results indicate that body mass has been conserved since early in the evolutionary history of each genus, while species diversified into different environmental niches. Our findings are in contrast to some previous studies that have suggested resource and climate related effects on body mass, though these studies have examined this question at different taxonomic and/or geographic scales. Am J Phys Anthropol, 2012. © 2012 Wiley Periodicals, Inc. [ABSTRACT FROM AUTHOR]

    : Copyright of American Journal of Physical Anthropology is the property of Wiley-Blackwell and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)