يعرض 1 - 10 نتائج من 13 نتيجة بحث عن '"Stefanie Mueller"', وقت الاستعلام: 1.34s تنقيح النتائج
  1. 1

    المصدر: UIST

    الوصف: In this paper, we present a method that makes 3D objects appear differently under different viewpoints. We accomplish this by 3D printing lenticular lenses across the curved surface of objects. By calculating the lens distribution and the corresponding surface color patterns, we can determine which appearance is shown to the user at each viewpoint. We built a 3D editor that takes as input the 3D model, and the visual appearances, i.e. images, to show at different viewpoints. Our 3D editor then calculates the corresponding lens placements and underlying color pattern. On export, the user can use ray tracing to live preview the resulting appearance from each angle. The 3D model, color pattern, and lenses are then 3D printed in one pass on a multi-material 3D printer to create the final 3D object. To determine the best fabrication parameters for 3D printing lenses, we printed lenses of different sizes and tested various post-processing techniques. To support a large number of different appearances, we compute the lens geometry that has the best trade-off between the number of viewpoints and the protrusion from the object geometry. Finally, we demonstrate our system in practice with a range of use cases for which we show the simulated and physical results side by side.

  2. 2

    المصدر: CHI Extended Abstracts

    الوصف: We demonstrate G-ID, a method that utilizes the subtle patterns left by the 3D printing process to distinguish and identify objects that otherwise look similar to the human eye. The key idea is to mark different instances of a 3D model by varying slicing parameters that do not change the model geometry but can be detected as machine-readable differences in the print. As a result, G-ID does not add anything to the object but exploits the patterns appearing as a byproduct of slicing, an essential step of the 3D printing pipeline. We introduce the G-ID slicing & labeling interface that varies the settings for each instance, and the G-ID mobile app, which uses image processing techniques to retrieve the parameters and their associated labels from a photo of the 3D printed object.

  3. 3

    المؤلفون: Stefanie Mueller

    المصدر: it - Information Technology. 60:113-117

    الوصف: Personal fabrication tools, such as 3D printers, are on the way of enabling a future in which non-technical users will be able to create custom objects. However, while the hardware is there, the current interaction model behind existing design tools is not suitable for non-technical users. Today, 3D printers are operated by fabricating the object in one go, which tends to take overnight due to the slow 3D printing technology. Consequently, the current interaction model requires users to think carefully before printing as every mistake may imply another overnight print. Planning every step ahead, however, is not feasible for non-technical users as they lack the experience to reason about the consequences of their design decisions. In this dissertation, we propose changing the interaction model around personal fabrication tools to better serve this user group. We draw inspiration from personal computing and argue that the evolution of personal fabrication may resemble the evolution of personal computing: Computing started with machines that executed a program in one go before returning the result to the user. By decreasing the interaction unit to single requests, turn-taking systems such as the command line evolved, which provided users with feedback after every input. Finally, with the introduction of direct-manipulation interfaces, users continuously interacted with a program receiving feedback about every action in real-time. In this dissertation, we explore whether these interaction concepts can be applied to personal fabrication as well. We start with fabricating an object in one go and investigate how to tighten the feedback-cycle on an object-level: We contribute a method called low-fidelity fabrication, which saves up to 90% fabrication time by creating objects as fast low-fidelity previews, which are sufficient to evaluate key design aspects. Depending on what is currently being tested, we propose different conversions that enable users to focus on different parts: faBrickator allows for a modular design in the early stages of prototyping; when users move on WirePrint allows quickly testing an object's shape, while Platener allows testing an object's technical function. We present an interactive editor for each technique and explain the underlying conversion algorithms. By interacting on smaller units, such as a single element of an object, we explore what it means to transition from systems that fabricate objects in one go to turn-taking systems. We start with a 2D system called constructable: Users draw with a laser pointer onto the workpiece inside a laser cutter. The drawing is captured with an overhead camera. As soon as the the user finishes drawing an element, such as a line, the constructable system beautifies the path and cuts it--resulting in physical output after every editing step. We extend constructable towards 3D editing by developing a novel laser-cutting technique for 3D objects called LaserOrigami that works by heating up the workpiece with the defocused laser until the material becomes compliant and bends down under gravity. While constructable and LaserOrigami allow for fast physical feedback, the interaction is still best described as turn-taking since it consists of two discrete steps: users first create an input and afterwards the system provides physical output. By decreasing the interaction unit even further to a single feature, we can achieve real-time physical feedback: Input by the user and output by the fabrication device are so tightly coupled that no visible lag exists. This allows us to explore what it means to transition from turn-taking interfaces, which only allow exploring one option at a time, to direct manipulation interfaces with real-time physical feedback, which allow users to explore the entire space of options continuously with a single interaction. We present a system called FormFab, which allows for such direct control. FormFab is based on the same principle as LaserOrigami: It uses a workpiece that when warmed up becomes compliant and can be reshaped. However, FormFab achieves the reshaping not based on gravity, but through a pneumatic system that users can control interactively. As users interact, they see the shape change in real-time. We conclude this dissertation by extrapolating the current evolution into a future in which large numbers of people use the new technology to create objects. We see two additional challenges on the horizon: sustainability and intellectual property. We investigate sustainability by demonstrating how to print less and instead patch physical objects. We explore questions around intellectual property with a system called Scotty that transfers objects without creating duplicates, thereby preserving the designer's copyright.

  4. 4

    المصدر: Queue. 15:96-110

    الوصف: This installment of Research for Practice provides curated reading guides to technology for underserved communities and to new developments in personal fabrication. First, Tawanna Dillahunt describes design considerations and technology for underserved and impoverished communities. Designing for the more than 1.6 billion impoverished individuals worldwide requires special consideration of community needs, constraints, and context. Tawanna’s selections span protocols for poor-quality communication networks, community-driven content generation, and resource and public service discovery. Second, Stefanie Mueller and Patrick Baudisch provide an overview of recent advances in personal fabrication (e.g., 3D printers). Their selection covers new techniques for fabricating (and emulating) complex materials (e.g., by manipulating the internal structure of an object), for more easily specifying object shape and behavior, and for human-in-the-loop rapid prototyping. Combined, these two guides provide a fascinating deep dive into some of the latest human-centric computer science research results.

  5. 5

    المساهمون: Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science

    المصدر: Tangible and Embedded Interaction
    MIT web domain

    الوصف: In this paper, we propose a different perspective on the use of support material: rather than printing support structures for overhangs, our idea is to make use of its transient nature, i.e. the fact that it can be dissolved when placed in a solvent, such as water. This enables a range of new use cases, such as quickly dissolving and replacing parts of a prototype during design iteration, printing temporary assembly labels directly on the object that leave no marks when dissolved, and creating time-dependent mechanisms, such as fading in parts of an image in a shadow art piece or releasing relaxing scents from a 3D printed structure sequentially overnight. Since we use regular support material (PVA), our approach works on consumer 3D printers without any modifications. To facilitate the design of objects that leverage dissolvable support, we built a custom 3D editor plugin that includes a simulation showing how support material dissolves over time. In our evaluation, our simulation predicted geometries that are statistically similar to the example shapes within 10% error across all samples.

    وصف الملف: application/pdf

  6. 6

    المساهمون: Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science

    المصدر: CHI
    MIT web domain

    الوصف: © 2018 Copyright is held by the owner/author(s). Recent research has shown how to change the color of existing objects using photochromic materials. These materials can switch their appearance from transparent to colored when exposed to light of a certain wavelength. The color remains active even when the object is removed from the light source. The process is fully reversible allowing users to recolor the object as many times as they want. So far, these systems have been limited to single color changes, i.e. changes from transparent to colored. In this paper, we present ColorMod, a method to extend this approach to multi-color changes (e.g., red-to-yellow). We accomplish this using a multi-color pattern with one color per voxel across the surface of the object. When recoloring the object, our system locally activates only those voxels that have the desired color and turns all other voxels off. We describe ColorMod's hardware/software system and its user interface. The user interface comes with a conversion tool for 3D printing and a painting tool for matching physical voxels with the desired appearance. We also provide our own material formula for a 3D-printable photochromic ink.
    Japan Society for the Promotion of Science. Grant-in-Aid for Scientific Research (grant number 16J00049)

    وصف الملف: application/pdf

  7. 7

    المؤلفون: Stefanie Mueller

    المصدر: CHI Extended Abstracts

    الوصف: Personal fabrication tools, such as 3D printers, are on the way of enabling a future in which non-technical users will be able to create custom objects. However, while the hardware is there, the current interaction model behind existing design tools is not suitable for non-technical users. Today, 3D printers are operated by fabricating the object in one go, which tends to take overnight due to the slow 3D printing technology. Consequently, the current interaction model requires users to think carefully before printing as every mistake may imply another overnight print. Planning every step ahead, however, is not feasible for non-technical users as they lack the experience to reason about the consequences of their design decisions. In this dissertation [2], we propose changing the interaction model around personal fabrication tools to better serve this user group. We draw inspiration from personal computing and argue that the evolution of personal fabrication may resemble the evolution of personal computing: Computing started with machines that executed a program in one go before returning the result to the user (Figure 1). By decreasing the interaction unit to single requests, turn-taking systems such as the command line evolved, which provided users with feedback after every input. Finally, with the introduction of direct-manipulation interfaces, users continuously interacted with a program receiving feedback about every action in real-time. In this dissertation, we explore whether these interaction concepts can be applied to personal fabrication as well.

  8. 8

    المساهمون: Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science

    المصدر: CHI Extended Abstracts
    MIT web domain

    الوصف: Recent research has shown how to change the color of existing objects using photochromic materials. These materials can switch their appearance from transparent to colored when exposed to light of a certain wavelength. The color remains active even when the object is removed from the light source. The process is fully reversible allowing users to recolor the object as many times as they want. So far, these systems were limited to single color changes (i.e. transparent to colored). We present ColorMod, a method to accomplish multi-color changes (e.g., red-to-yellow). We achieve this using a multi-color pattern with one color per voxel across the surface of the object. When recoloring the object, our system locally activates only those voxels that have the desired color and turns all other voxels off. We describe Color Mod ’s hardware/software system and its user interface. The user interface comes with a conversion tool for 3D printing and a painting tool for matching physical voxels with the desired appearance. We also provide our own material formula for a 3D-printable photochromic ink.
    Japan Society for the Promotion of Science. Grant-in-Aid for Scientific Research (grant number 16J00049)

    وصف الملف: application/pdf

  9. 9

    المصدر: UIST

    الوصف: Personal fabrication is currently a one-way process: Once an object has been fabricated with a 3D printer, it cannot be changed anymore; any change requires printing a new version from scratch. The problem is that this approach ignores the nature of design iteration, i.e. that in subsequent iterations large parts of an object stay the same and only small parts change. This makes fabricating from scratch feel unnecessary and wasteful. In this paper, we propose a different approach: instead of re-printing the entire object from scratch, we suggest patching the existing object to reflect the next design iteration. We built a system on top of a 3D printer that accomplishes this: Users mount the existing object into the 3D printer, then load both the original and the modified 3D model into our software, which in turn calculates how to patch the object. After identifying which parts to remove and what to add, our system locates the existing object in the printer using the system's built-in 3D scanner. After calibrating the orientation, a mill first removes the outdated geometry, then a print head prints the new geometry in place. Since only a fraction of the entire object is refabricated, our approach reduces material consumption and plastic waste (for our example objects by 82% and 93% respectively).

  10. 10

    المصدر: CHI Extended Abstracts

    الوصف: Low-fidelity fabrication systems speed up rapid prototyping by printing intermediate versions of a prototype as fast, low-fidelity previews. Only the final version is fabricated as a full high-fidelity 3D print. This allows designers to iterate more quickly-achieving a better design in less time. Depending on what is currently being tested, low-fidelity fabrication is implemented in different ways: (1) faBrickator allows for a modular approach by substituting sub-volumes of the 3D model with building blocks. (2) WirePrint allows for quickly testing the shape of an object, such as the ergonomic fit, by printing wireframe structures. (3) Platener preserves the technical function by substituting 3D print with laser-cut plates of the same size and thickness. At our CHI'15 interactivity booth, we give a combined live demo of all three low-fidelity fabrication systems- putting special focus on our new low-fidelity fabrication system Platener (paper at CHI'15).

    وصف الملف: application/pdf