يعرض 1 - 3 نتائج من 3 نتيجة بحث عن '"Levy, Samuel"', وقت الاستعلام: 0.68s تنقيح النتائج
  1. 1
    رسالة جامعية

    المؤلفون: Levy, Samuel Jordan

    مرشدي الرسالة: Hasselmo, Michael

    مصطلحات موضوعية: Neurosciences

  2. 2
    رسالة جامعية

    المؤلفون: Levy, Samuel Jordan

    المساهمون: Hasselmo, Michael

    مصطلحات موضوعية: Neurosciences

    العلاقة: https://hdl.handle.net/2144/43849Test; orcid:0000-0002-4498-0309

  3. 3
    دورية أكاديمية

    وصف الملف: application/pdf

    العلاقة: Levy, Samuel J.; Kinsky, Nathaniel R.; Mau, William; Sullivan, David W.; Hasselmo, Michael E. (2021). "Hippocampal spatial memory representations in mice are heterogeneously stable." Hippocampus 31(3): 244-260.; https://hdl.handle.net/2027.42/166394Test; Hippocampus; Poe, G. R., Nitz, D. A., McNaughton, B. L., & Barnes, C. A. ( 2000 ). Experience‐dependent phase‐reversal of hippocampal neuron firing during REM sleep. Brain Research, 855 ( 1 ), 176 – 180. https://doi.org/10.1016/S0006-8993Test(99)02310-0; Lisman, J. E., & Otmakhova, N. A. ( 2001 ). Storage, recall, and novelty detection of sequences by the hippocampus: Elaborating on the SOCRATIC model to account for normal and aberrant effects of dopamine. Hippocampus, 11 ( 5 ), 551 – 568. https://doi.org/10.1002/hipo.1071Test; Low, R. J., Lewallen, S., Aronov, D., Nevers, R., & Tank, D. W. ( 2018 ). Probing variability in a cognitive map using manifold inference from neural dynamics. BioRxiv https://doi.org/10.1101/418939Test; Mankin, E. A., Diehl, G. W., Sparks, F. T., Leutgeb, S., & Leutgeb, J. K. ( 2015 ). Hippocampal CA2 activity patterns change over time to a larger extent than between spatial contexts. Neuron, 85 ( 1 ), 190 – 201. https://doi.org/10.1016/j.neuron.2014.12.001Test; Mankin, E. A., Sparks, F. T., Slayyeh, B., Robert, J., Leutgeb, S., & Leutgeb, J. K. ( 2012 ). Correction for Mankin et al., neuronal code for extended time in the hippocampus: Fig. 5. Proceedings of the National Academy of Sciences of the United States of America, 102 ( 47 ), 19462 – 19467. https://doi.org/10.1007/s007660070019Test; Mau, W., Sullivan, D. W., Kinsky, N. R., Hasselmo, M. E., Howard, M. W., & Eichenbaum, H. ( 2018 ). The same hippocampal CA1 population simultaneously codes temporal information over multiple timescales. Current Biology, 28 ( 10 ), 1499 – 1508.e4. https://doi.org/10.1016/j.cub.2018.03.051Test; McClelland, J. L., McNaughton, B. L., & O’Reilly, R. C. ( 1995 ). Why there are complementary learning systems in the hippocampus and neocortex: Insights from the successes and failures of connectionist models of learning and memory. Psychological Review, 102 ( 3 ), 419 – 457. https://doi.org/10.1037/0033-295X.102.3.419Test; McKenzie, S., Robinson, N. T. M., Herrera, L., Churchill, J. C., & Eichenbaum, H. ( 2013 ). Learning causes reorganization of neuronal firing patterns to represent related experiences within a hippocampal schema. Journal of Neuroscience, 33 ( 25 ), 10243 – 10256. https://doi.org/10.1523/JNEUROSCI.0879-13.2013Test; McNaughton, B. L., & Morris, R. G. M. ( 1987 ). Hippocampal synaptic enhancement and information storage within a distributed memory system. Trends, 10 ( 10 ), 408 – 415.; Mehta, M. R., Quirk, M. C., & Wilson, M. A. ( 2000 ). Experience‐dependent asymmetric shape of hippocampal receptive fields. Neuron, 25 ( 3 ), 707 – 715. https://doi.org/10.1016/S0896-6273Test(00)81072-7; Norman, K. A., & O’Reilly, R. C. ( 2003 ). Modeling hippocampal and neocortical contributions to recognition memory: A complementary‐learning‐systems approach. Psychological Review, 110 ( 4 ), 611 – 646. https://doi.org/10.1037/0033-295X.110.4.611Test; Pfeiffer, T., Poll, S., Bancelin, S., Angibaud, J., Inavalli, V. K., Keppler, K., … Nägerl, U. V. ( 2018 ). Chronic 2P‐STED imaging reveals high turnover of dendritic spines in the hippocampus in vivo. eLife, 7, 1 – 17. https://doi.org/10.7554/elife.34700Test; Redish, A. D., & Touretztky, D. S. ( 1998 ). The role of the hippocampus in the Morris water maze. Computational Neuroscience, 10 ( 1 ), 73 – 111. https://doi.org/10.1007/978-1-4615-4831-7_17Test; Rubin, A., Geva, N., Sheintuch, L., & Ziv, Y. ( 2015 ). Hippocampal ensemble dynamics timestamp events in long‐term memory. eLife, 4 ( December 2015 ), 1 – 16. https://doi.org/10.7554/eLife.12247Test; Rule, M. E., O’Leary, T., & Harvey, C. D. ( 2019 ). Causes and consequences of representational drift. Current Opinion in Neurobiology, 58, 141 – 147. https://doi.org/10.1016/j.conb.2019.08.005Test; Schapiro, A. C., Turk‐Browne, N. B., Botvinick, M. M., & Norman, K. A. ( 2017 ). Complementary learning systems within the hippocampus: A neural network modelling approach to reconciling episodic memory with statistical learning. Philosophical Transactions of the Royal Society B: Biological Sciences, 372 ( 1711 ), 20160049. https://doi.org/10.1098/rstb.2016.0049Test; Sun, C., Yang, W., Martin, J., & Tonegawa, S. ( 2019 ). CA1 pyramidal cells organize an episode by segmented and ordered events. BioRxiv Preprint, 565689. https://doi.org/10.1101/565689Test; Takeuchi, T., Duszkiewicz, A. J., Sonneborn, A., Spooner, P. A., Yamasaki, M., Watanabe, M., … Morris, R. G. M. ( 2016 ). Locus coeruleus and dopaminergic consolidation of everyday memory. Nature, 537 ( 7620 ), 357 – 362. https://doi.org/10.1038/nature19325Test; Taxidis, J., Pnevmatikakis, E. A., Dorian, C. C., Mylavarapu, A. L., Arora, J. S., Samadian, K. D., Hoffberg, E. A., & Golshani, P. ( 2020 ). Differential Emergence and Stability of Sensory and Temporal Representations in Context‐Specific Hippocampal Sequences. Neuron, http://dx.doi.org/10.1016/j.neuron.2020.08.028Test.; Thompson, L. T., & Best, P. J. ( 1990 ). Long‐term stability of the place‐field activity of single units recorded from the dorsal hippocampus of freely behaving rats. Brain Research, 509 ( 2 ), 299 – 308. https://doi.org/10.1016/0006-8993Test(90)90555-P; Treves, A., & Rolls, E. T. ( 1994 ). Computational analysis of the role of hippocampus in memor. Hippocampus, 4 ( 3 ), 374 – 391.; Winocur, G., Moscovitch, M., & Bontempi, B. ( 2010 ). Memory formation and long‐term retention in humans and animals: Convergence towards a transformation account of hippocampal‐neocortical interactions. Neuropsychologia, 48 ( 8 ), 2339 – 2356. https://doi.org/10.1016/j.neuropsychologia.2010.04.016Test; Wood, E. R., Dudchenko, P. A., Robitsek, R. J., & Eichenbaum, H. B. ( 2000 ). Hippocampal neurons encode information about different types of memory episodes occurring in the same location. Neuron, 27, 623 – 633. https://doi.org/10.1016/s0896-6273Test(00)00071-4; Yiu, A. P., Mercaldo, V., Yan, C., Richards, B., Rashid, A. J., Hsiang, H. L. L., … Josselyn, S. A. ( 2014 ). Neurons are recruited to a memory trace based on relative neuronal excitability immediately before training. Neuron, 83 ( 3 ), 722 – 735. https://doi.org/10.1016/j.neuron.2014.07.017Test; Zhou, Y., Won, J., Karlsson, M. G., Zhou, M., Rogerson, T., Balaji, J., … Silva, A. J. ( 2009 ). CREB regulates excitability and the allocation of memory to subsets of neurons in the amygdala. Nature Neuroscience, 12 ( 11 ), 1438 – 1443. https://doi.org/10.1038/nn.2405Test; Ziv, Y., Burns, L. D., Cocker, E. D., Hamel, E. O., Ghosh, K. K., Kitch, L. J., … Schnitzer, M. J. ( 2013 ). Long‐term dynamics of CA1 hippocampal place codes. Nature Neuroscience, 16 ( 3 ), 264 – 266. https://doi.org/10.1038/nn.3329Test; Alme, C. B., Miao, C., Jezek, K., Treves, A., Moser, E. I., & Moser, M.‐B. ( 2014 ). Place cells in the hippocampus: Eleven maps for eleven rooms. Proceedings of the National Academy of Sciences of the United States of America, 111 ( 52 ), 18428 – 18435. https://doi.org/10.1073/pnas.1421056111Test; Attardo, A., Fitzgerald, J. E., & Schnitzer, M. J. ( 2015 ). Impermanence of dendritic spines in live adult CA1 hippocampus. Nature, 523 ( 7562 ), 592 – 596. https://doi.org/10.1038/nature14467Test; Barnes, C. A., Suster, M. S., Shen, J., & Mcnaughton, B. L. ( 1997 ). Multistability of cognitive maps in the hippocampus of old rats. Nature, 388 ( August 1996 ), 272 – 275.; Brown, T. I., Ross, R. S., Keller, J. B., Hasselmo, M. E., & Stern, C. E. ( 2010 ). Which way was I going? Contextual retrieval supports the disambiguation of well learned overlapping navigational routes. Journal of Neuroscience, 30 ( 21 ), 7414 – 7422. https://doi.org/10.1523/JNEUROSCI.6021-09.2010Test; Brown, T. I., & Stern, C. E. ( 2014 ). Contributions of medial temporal lobe and striatal memory systems to learning and retrieving overlapping spatial memories. Cerebral Cortex, 24 ( 7 ), 1906 – 1922. https://doi.org/10.1093/cercor/bht041Test; Chambers, A. R., & Rumpel, S. ( 2017 ). A stable brain from unstable components: Emerging concepts and implications for neural computation. Neuroscience, 357, 172 – 184. https://doi.org/10.1016/j.neuroscience.2017.06.005Test; Chanales, A. J. H., Oza, A., Favila, S. E., & Kuhl, B. A. ( 2017 ). Overlap among spatial memories triggers repulsion of hippocampal representations. Current Biology, 27 ( 15 ), 2307 – 2317.e5. https://doi.org/10.1016/j.cub.2017.06.057Test; de Paola, V., Holtmaat, A., Knott, G., Song, S., Wilbrecht, L., Caroni, P., & Svoboda, K. ( 2006 ). Cell type‐specific structural plasticity of axonal branches and boutons in the adult neocortex. Neuron, 49 ( 6 ), 861 – 875. https://doi.org/10.1016/j.neuron.2006.02.017Test; Deadwyler, S. a., Bunn, T., & Hampson, R. E. ( 1996 ). Hippocampal ensemble activity during spatial delayed‐nonmatch‐to‐sample performance in rats. The Journal of Neuroscience, 16 ( 1 ), 354 – 372.; Dudchenko, P. A., Wood, E. R., & Eichenbaum, H. ( 2000 ). Neurotoxic hippocampal lesions have no effect on odor span and little effect on odor recognition memory but produce significant impairments on spatial span, recognition, and alternation. The Journal of Neuroscience, 20 ( 8 ), 2964 – 2977 Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/10751449Test; Ferbinteanu, J., & Shapiro, M. L. ( 2003 ). Prospective and retrospective memory coding in the hippocampus. Neuron, 40 ( 6 ), 1227 – 1239. https://doi.org/10.1016/S0896-6273Test(03)00752-9; Frank, L. M., Brown, E. N., & Wilson, M. ( 2000 ). Trajectory encoding in the hippocampus and entorhinal cortex. Neuron, 27 ( 1 ), 169 – 178. https://doi.org/10.1016/S0896-6273Test(00)00018-0; Ghosh, V. E., & Gilboa, A. ( 2013 ). What is a memory schema? A historical perspective on current neuroscience literature. Neuropsychologia, 53, 104 – 114. https://doi.org/10.1016/j.neuropsychologia.2013.11.010Test; Grieves, R. M., Wood, E. R., & Dudchenko, P. A. ( 2016 ). Place cells on a maze encode routes rather than destinations. eLife, 5, 1 – 24. https://doi.org/10.7554/eLife.15986Test; Griffin, A. L., Eichenbaum, H., & Hasselmo, M. E. ( 2007 ). Spatial representations of hippocampal CA1 neurons are modulated by behavioral context in a hippocampus‐dependent memory task. Journal of Neuroscience, 27 ( 9 ), 2416 – 2423. https://doi.org/10.1523/jneurosci.4083-06.2007Test; Grutzendler, J., Kasthuri, N., & Gan, W. ( 2002 ). Long‐term spine dendritic spine stability in the adult cortex. Letters to Nature, 420 ( December ), 812 – 816. https://doi.org/10.1038/nature01151.1Test; Hampson, R. E., Jarrard, L. E., & Deadwyler, S. A. ( 1999 ). Effects of ibotenate hippocampal and extrahippocampal destruction on delayed‐match and ‐nonmatch‐to‐sample behavior in rats. The Journal of Neuroscience, 19 ( 4 ), 1492 – 1507. https://doi.org/10.1523/jneurosci.19-04-01492.1999Test; Han, J., Kushner, S. A., Yiu, A. P., Cole, C. J., Matynia, A., Brown, R. A., … Josselyn, S. A. ( 2007 ). During memory formation. Science, 316 ( April ), 457 – 460. https://doi.org/10.1126/science.1139438Test; Hasselmo, M. E. ( 2005 ). The role of hippocampal regions CA3 and CA1 in matching entorhinal input with retrieval of associations between objects and context: Theoretical comment on Lee et al. (2005). Behavioral Neuroscience, 119 ( 1 ), 342 – 345. https://doi.org/10.1037/0735-7044.119.1.342Test; Hasselmo, M. E. ( 2008 ). Grid cell mechanisms and function: Contributions of entorhinal persistent spiking and phase resetting. Hippocampus, 18 ( 12 ), 1213 – 1229. https://doi.org/10.1002/hipo.20512.GridTest; Hasselmo, M. E., & Eichenbaum, H. ( 2005 ). Hippocampal mechanisms for the context‐dependent retrieval of episodes. Neural Networks, 18 ( 9 ), 1172 – 1190. https://doi.org/10.1016/j.neunet.2005.08.007Test; Hasselmo, M. E., & Schnell, E. ( 1994 ). Laminar selectivity of the cholinergic suppression of synaptic transmission in rat hippocampal region CA1: Computational modeling and brain slice physiology. Journal of Neuroscience, 14 ( 6 ), 3898 – 3914. https://doi.org/10.1523/jneurosci.14-06-03898.1994Test; Hasselmo, M. E., & Wyble, B. P. ( 1997 ). Free recall and recognition in a network model of the hippocampus: Simulating effects of scopolamine on human memory function. Behavioural Brain Research, 89, 1 – 34. https://doi.org/10.1080/00268977500102411Test; Kempadoo, K. A., Mosharov, E. V., Choi, S. J., Sulzer, D., & Kandel, E. R. ( 2016 ). Dopamine release from the locus coeruleus to the dorsal hippocampus promotes spatial learning and memory. Proceedings of the National Academy of Sciences of the United States of America, 113 ( 51 ), 14835 – 14840. https://doi.org/10.1073/pnas.1616515114Test; Kentros, C. G., Agnihotri, N. T., Streater, S., Hawkins, R. D., & Kandel, E. R. ( 2004 ). Increased attention to spatial context increases both place field stability and spatial memory. Neuron, 42 ( 2 ), 283 – 295. https://doi.org/10.1016/S0896-6273Test(04)00192-8; Kinsky, N. R., Mau, W., Sullivan, D. W., Levy, S. J., Ruesch, E. A., & Hasselmo, M. E. ( 2020 ). Trajectory‐modulated hippocampal neurons persist throughout memory‐guided navigation. Nature Communications, 11 ( 1 ), 2443. https://doi.org/10.1038/s41467-020-16226-4Test; Kinsky, N. R., Sullivan, D. W., Mau, W., Hasselmo, M. E., & Eichenbaum, H. B. ( 2018 ). Hippocampal place fields maintain a coherent and flexible map across long timescales. Current Biology, 28 ( 22 ), 3578 – 3588. https://doi.org/10.1016/j.cub.2018.09.037Test; Kobayashi, T., Tran, A. H., Nishijo, H., Ono, T., & Matsumoto, G. ( 2003 ). Contribution of hippocampal place cell activity to learning and formation of goal‐directed navigation in rats. Neuroscience, 117 ( 4 ), 1025 – 1035. https://doi.org/10.1016/S0306-4522Test(02)00700-5; Komorowski, R. W., Manns, J. R., & Eichenbaum, H. ( 2009 ). Robust conjunctive item‐place coding by hippocampal neurons parallels learning what happens where. The Journal of Neuroscience, 29 ( 31 ), 9918 – 9929. https://doi.org/10.1523/JNEUROSCI.1378-09.2009Test; Koster, R., Chadwick, M. J., Chen, Y., Berron, D., Banino, A., Düzel, E., … Kumaran, D. ( 2018 ). Big‐loop recurrence within the hippocampal system supports integration of information across episodes. Neuron, 99 ( 6 ), 1342 – 1354.e6. https://doi.org/10.1016/j.neuron.2018.08.009Test; Kumaran, D., & McClelland, J. L. ( 2012 ). Generalization through the recurrent interaction of episodic memories: A model of the hippocampal system. Psychological Review, 119 ( 3 ), 573 – 616. https://doi.org/10.1037/a0028681Test; Law, L. M., Bulkin, D. A., & Smith, D. M. ( 2016 ). Slow stabilization of concurrently acquired hippocampal context representations. Hippocampus, 26 ( 12 ), 1560 – 1569. https://doi.org/10.1002/hipo.22656Test; Lee, I., Griffin, A. L., Zilli, E. A., Eichenbaum, H., & Hasselmo, M. E. ( 2006 ). Gradual translocation of spatial correlates of neuronal firing in the hippocampus toward prospective reward locations. Neuron, 51 ( 5 ), 639 – 650. https://doi.org/10.1016/j.neuron.2006.06.033Test; Leutgeb S. ( 2005 ). Independent Codes for Spatial and Episodic Memory in Hippocampal Neuronal Ensembles. Science, 309 ( 5734 ), 619 – 623. http://dx.doi.org/10.1126/science.1114037Test.; Lever, C., Wills, T., Cacucci, F., Burgess, N., & Keefe, J. O. ( 2002 ). Long‐term plasticity in hippocampal place‐cell representation of environmental geometry. Letters to Nature, 416 ( March ), 236 – 238. https://doi.org/10.1038/416090aTest; Lewis, P. A., Knoblich, G., & Poe, G. ( 2018 ). How memory replay in sleep boosts creative problem‐solving. Trends in Cognitive Sciences, 22 ( 6 ), 491 – 503. https://doi.org/10.1016/j.tics.2018.03.009Test; Lipton, P. A., White, J. A., & Eichenbaum, H. ( 2007 ). Disambiguation of overlapping experiences by neurons in the medial entorhinal cortex. The Journal of Neuroscience, 27 ( 21 ), 5787 – 5795. https://doi.org/10.1523/JNEUROSCI.1063-07.2007Test