يعرض 1 - 10 نتائج من 20 نتيجة بحث عن '"remobilization"', وقت الاستعلام: 1.02s تنقيح النتائج
  1. 1
    دورية أكاديمية
  2. 2
    دورية أكاديمية
  3. 3

    المصدر: Journal of Integrative Agriculture, Vol 20, Iss 12, Pp 3277-3288 (2021)

    الوصف: Increasing zinc (Zn) concentration in wheat grain is important to minimize human dietary Zn deficiency. This study aimed to investigate the effect of foliar Zn and soil nitrogen (N) applications on the accumulation and distribution of N and Zn in grain pearling fractions, N remobilization, and the relationships between nutrient concentration in the vegetative tissues and grain or its fractions in two cropping years in the North China Plain. The results showed a progressive decrease in N and Zn concentrations from the outer to the inner parts of grain, with most of the accumulation in the core endosperm. Foliar Zn application significantly increased N concentration in the pericarp, and soil N application increased N concentration in each grain fraction. Both treatments significantly increased core endosperm Zn concentration. Foliar Zn had no effect on grain N and Zn distribution. Soil N application made N concentrated in the aleurone, promoted Zn translocation to the core endosperm and also increased N remobilization and its efficiency from the shoot to the grain, but no improved contribution to grain was found. N concentration in grain and its fractions were positively correlated with N in vegetative organs at anthesis and maturity, while positive correlations were obtained between N concentration in the pericarp and progressive central area of the endosperm and Zn concentration in the core endosperm. Thus, foliar Zn and soil N applications effectively increased yield and N and Zn concentrations in the wheat grain, particularly in the endosperm, and could be promising strategies to address Zn deficiency.

  4. 4

    المصدر: Journal of Integrative Agriculture, Vol 18, Iss 8, Pp 1882-1892 (2019)

    الوصف: Stay green (SG) maize was found to have higher grain yield and post-silking nitrogen (N) uptake (PostN) compared with a non-stay green (NSG) hybrid. To understand the effects of plant density on grain yield (GY) and N efficiency in modern maize hybrids, we compared two modern hybrids (SG hybrid DY508 and NSG hybrid NH101) with similar maturity ratings at three plant densities (45000, 60000, and 75000 pl ha−1) in 2014 and 2015. GY, leaf senescence, dry matter (DM) accumulation, N accumulation, PostN, and post-silking N remobilization (RemN) were analyzed. DY508 and NH101 had similar GY, but DY508 had higher thousand kernel weight (TKW) and lower kernel number (KN) than NH101. Plant density significantly increased GY in the two hybrids. On average, over the two years, plant density improved GY in DY508 and NH101 by 18.5 and 11.1%, respectively, but there were no differences in total dry matter (TDM) and post-silking DM (PostDM) between the two hybrids. Plant density improved leaf N, stem N, and grain N at the silking and maturity stages in 2014 and 2015. DY508 was lower in harvest index (HI), nitrogen harvest index (NHI), and grain N concentration (GNC) than NH101. Grain N in DY508 was 2.61 kg ha−1 less than in NH101, and this was caused by lower GNC and leaf RemN. On the average, DY508 was 1.62 kg ha−1 less in leaf remobilized N (leaf RemN) than NH101, but was similar in stem remobilized N (stem RemN; 2.47 kg ha−1 vs. 3.41 kg ha−1). Maize hybrid DY508 shows delayed leaf senescence in the upper and bottom canopy layers in the later stages of growth. The present study provides evidence that the NH101, which has rapid leaf senescence at the late grain-filling stage, has gained equivalent GY and higher leaf RemN, and was more efficient in N utilization.

  5. 5

    المصدر: Horticulturae; Volume 7; Issue 12; Pages: 544
    Horticulturae, Vol 7, Iss 544, p 544 (2021)

    الوصف: The effect of thermal condition on the uptake of autumn and winter applied N and its subsequent utilization in spring tea (Camellia sinensis) was investigated by applying 15N enriched urea as single or split applications between October and February in two commercial plantations at Xingyang of Henan province and Yongchuan of Chongqing with different thermal conditions. The proportion of N derived from 15N-labeled urea (Ndff%) in fibrous root and mature leaves 15 days after application at Xingyang and the Ndff% of mature leaves on the day of the first spring tea harvest at both sites were the highest in the single October application. The Ndff% of the following spring tea was also the highest in the single October application at both sites. The results showed that application of N fertilizer in October relative to other later months most significantly improves the accumulation of plant N reserves and consequently contributes more significantly to the early spring tea. Such timing effect was related to the thermal condition, i.e., the growing degree days (°C•d, T > 8 °C) between the dates of fertilization and harvest of young shoots, which represents the combining effect of the temperature and the residence time of N fertilizer in the soil.

    وصف الملف: application/pdf

  6. 6

    المصدر: International Journal of Molecular Sciences
    Volume 21
    Issue 6
    International Journal of Molecular Sciences, Vol 21, Iss 6, p 2171 (2020)

    الوصف: Nitrogen (N) is essential for plant growth and crop productivity. Organic N is a major form of remobilized N in plants&rsquo
    response to N limitation. It is necessary to understand the regulatory role of N limitation adaption (NLA) in organic N remobilization for this adaptive response. Transcriptional and proteomic analyses were integrated to investigate differential responses of wild-type (WT) and nla mutant plants to N limitation and to identify the core organic N transporters targeted by NLA. Under N limitation, the nla mutant presented an early senescence with faster chlorophyll loss and less anthocyanin accumulation than the WT, and more N was transported out of the aging leaves in the form of amino acids. High-throughput transcriptomic and proteomic analyses revealed that N limitation repressed genes involved in photosynthesis and protein synthesis, and promoted proteolysis
    these changes were higher in the nla mutant than in the WT. Both transcriptional and proteomic profiling demonstrated that LHT1, responsible for amino acid remobilization, were only significantly upregulated in the nla mutant under N limitation. These findings indicate that NLA might target LHT1 and regulate organic N remobilization, thereby improving our understanding of the regulatory role of NLA on N remobilization under N limitation.

    وصف الملف: application/pdf

  7. 7

    المصدر: SEDICI (UNLP)
    Universidad Nacional de La Plata
    instacron:UNLP

    الوصف: Nitrogen (N) fertilization and fungicides are important tools in order to achieve high yields and quality in wheat (Triticum aestivum L.), although its use may affect the expression of foliar diseases such as leaf rust (LR) (Puccinia triticina Eriks.). An approach focused on the impact of LR and its interaction with fungicides mixtures and N fertilization rates could be useful to improve the modelling of crop N dynamics and enhance grain yield and quality in the context of the integrated management. Our study was designed to determine the additive effects of carboxamide fungicides (TSC) to a double triazole-strobilurin (TS) mixture under three N fertilization rates on the LR disease progress, healthy area duration (HAD), grain yield and N dynamics during two years. Main plots corresponded to three fungicide treatments and three N doses were the sub-plots. LR disease progress, HAD, yield, N remobilization (NREM), N post-anthesis absorption (NPA), N stored in grains (NG) and %N in grains (%Ng) were evaluated. LR severity increased at higher N rates. TSC applications produced the major decreases on LR severity and the main increases in HAD, which resulted in the higher yield increases (+2726 kg/ha). The %Ng increased with the application of fungicides when LR was controlled. LR infections generated reductions in NREM, NPA and NG, a response that could be explained by decreases in aboveground biomass and yield, coupled with reductions on N harvest index and N remobilization efficiency. Combined effect of TSC fungicides and increases in N dose showed the largest increases in NREM, NPA and NG.
    Facultad de Ciencias Agrarias y Forestales

    وصف الملف: application/pdf

  8. 8

    المصدر: Frontiers in Plant Science, Vol 8 (2017)

    الوصف: © 2017 Li, Yu, Liu, Mathesius, Wang, Tang, Wu, Liu, Zhang and Jin. Nitrogen deficiency limits crop performance under elevated CO2 (eCO2), depending on the ability of plant N uptake. However, the dynamics and redistribution of N2 fixation, and fertilizer and soil N use in legumes under eCO2 have been little studied. Such an investigation is essential to improve the adaptability of legumes to climate change. We took advantage of genotype-specific responses of soybean to increased CO2 to test which N-uptake phenotypes are most strongly related to enhanced yield. Eight soybean cultivars were grown in open-top chambers with either 390 ppm (aCO2) or 550 ppm CO2 (eCO2). The plants were supplied with 100mg N kg−1 soil as15N-labeled calcium nitrate, and harvested at the initial seed-filling (R5) and full-mature (R8) stages. Increased yield in response to eCO2 correlated highly (r = 0.95) with an increase in symbiotically fixed N during the R5 to R8 stage. In contrast, eCO2 only led to small increases in the uptake of fertilizer-derived and soil-derived N during R5 to R8, and these increases did not correlate with enhanced yield. Elevated CO2 also decreased the proportion of seed N redistributed from shoot to seeds, and this decrease strongly correlated with increased yield. Moreover, the total N uptake was associated with increases in fixed-N per nodule in response to eCO2, but not with changes in nodule biomass, nodule density, or root length.

  9. 9

    المساهمون: Environnement et Grandes Cultures (EGC), AgroParisTech-Institut National de la Recherche Agronomique (INRA), Institut National de la Recherche Agronomique (INRA)-AgroParisTech

    المصدر: Annals of Botany
    Annals of Botany, Oxford University Press (OUP), 2008, 102 (4), pp.579-590. ⟨10.1093/aob/mcn124⟩

    الوصف: Background and Aims French wheat grains may be of little value on world markets because they have low and highly variable grain protein concentrations (GPC). This nitrogen-yield to yield ratio depends on crop nitrogen (N) fertilization as well as on crop capacity to use N, which is known to vary with climate and disease severity. Here an examination is made of the respective roles that N remobilization and post-anthesis N uptake play in N yield variations; in particular, when wheat crops (Triticum aestivum) are affected by leaf rust (Puccinia triticina) and Septoria tritici blotch (teleomorph Mycosphaerella graminicola). Methods Data from a 4-year field experiment was used to analyse N yield variations in wheat crops grown either with a third or no late N fertilization. Natural aerial epidemics ensured a range of disease severity, and fungicide ensured disease-free control plots. The data set of Gooding et al. (2005, Journal of Agricultural Science 143: 503-518) was incorporated in order to enlarge the range of conditions. Key Results Post-anthesis N uptake accounted for a third of N yield whilst N remobilization accounted for two-thirds in all crops whether affected by diseases or not. However, variations in N yield were highly correlated with post-anthesis N uptake, more than with N remobilization, in diseased and also healthy crops. Furthermore, N remobilization did not significantly correlate with N yield in healthy crops. These findings matched data from studies using various wheat genotypes under various management and climatic conditions. Leaf area duration ( LAD) accurately predicted N remobilization whether or not crops were diseased; in diseased crops, LAD also accurately predicted N uptake. Conclusions Under the experimental conditions, N yield variations were closely associated with post-anthesis N uptake in diseased but also in healthy crops. Understanding the respective roles of N uptake and N remobilization in the case of diseased and healthy crops holds the promise of better modelling of variations in N yield, and thus in GPC.

  10. 10

    المصدر: Frontiers in Plant Science, Vol 5 (2014)
    Frontiers in Plant Science

    الوصف: It is well established that a high external NH(+) 4 concentration depresses many processes in plant development, but the underlying mechanisms are still not well understood. To determine whether the negative effects of high levels of NH(+) 4 are related to competitive cation uptake, wheat was grown in a field with moderate (18 g N m(-2)) and high (30 g N m(-2)) supplies of NH(+) 4 in the presence or absence of additional K(+) (6 g K2O m(-2)) to examine culm mechanical strength, the main components of the vascular bundle, nitrogen (N) remobilization and the grain-filling rate. The results indicated that an excessive supply of NH(+) 4 significantly decreased culm mechanical strength, the cellulose and lignin contents of vascular bundles, the N remobilization efficiency (NRE) and the grain-filling rate compared with a moderate level of NH(+) 4. The additional provision of K(+) considerably alleviated these negative effects of high NH(+) 4, resulting in a 19.41-26.95% increase in culm mechanical strength during grain filling and a 34.59% increase in the NRE. An assay using the scanning ion-selective electrode technique (SIET) showed that the net rate of transmembrane K(+) influx decreased by 84.62%, and measurements using flame photometry demonstrated that the K(+) content decreased by 36.13% in wheat plants subjected to high NH(+) 4. This study indicates that the effects of high NH(+) 4 on culm mechanical strength, cellulose and lignin contents, the NRE and the grain-filling rate are probably associated with inhibition of K(+) uptake in wheat.