يعرض 1 - 4 نتائج من 4 نتيجة بحث عن '"Lilleskov, Erik A"', وقت الاستعلام: 0.75s تنقيح النتائج
  1. 1
    دورية أكاديمية
  2. 2
    دورية أكاديمية

    وصف الملف: application/pdf

    العلاقة: Lamit, Louis J.; Romanowicz, Karl J.; Potvin, Lynette R.; Lennon, Jay T.; Tringe, Susannah G.; Chimner, Rodney A.; Kolka, Randall K.; Kane, Evan S.; Lilleskov, Erik A. (2021). "Peatland microbial community responses to plant functional group and drought are depth‐dependent." Molecular Ecology (20): 5119-5136.; https://hdl.handle.net/2027.42/170822Test; Molecular Ecology; Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., & Wagner, H. ( 2019 ). vegan: Community Ecology Package. R package version 2.5‐6. https://CRAN.RTest‐project.org/package=vegan; Nilsson, R. H., Tedersoo, L., Ryberg, M., Kristiansson, E., Hartmann, M., Unterseher, M., Porter, T. M., Bengtsson‐Palme, J., Walker, D. M., de Sousa, F., Gamper, H. A., Larsson, E., Larsson, K.‐H., Kõljalg, U., Edgar, R. C., & Abarenkov, K. ( 2015 ). A comprehensive, automatically updated fungal ITS sequence dataset for reference‐based chimera control in environmental sequencing efforts. Microbes and Environments, 30, 145 – 150. https://doi.org/10.1264/jsme2.ME14121Test; Orwin, K. H., Kirschbaum, M. U. F., St John, M. G., & Dickie, I. A. ( 2011 ). Organic nutrient uptake by mycorrhizal fungi enhances ecosystem carbon storage: a model‐ based assessment. Ecology Letters, 14, 493 – 502. https://doi.org/10.1111/j.1461Test‐0248.2011.01611.x; Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., & Duchesnay, E. ( 2011 ). Scikit‐learn: machine learning in python. Journal of Machine Learning Research, 12, 2825 – 2830.; Potvin, L., Kane, E. S., Chimner, R. A., Kolka, R. K., & Lileskov, E. A. ( 2015 ). Effects of water table position and plant functional group on plant community, aboveground production, and peat properties in a peat‐ land mesocosm experiment (PEATcosm). Plant and Soil, 387, 277 – 294. https://doi.org/10.1007/s11104Test‐014‐2301‐8; Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., & Glöckner, F. O. ( 2013 ). The SILVA ribosomal RNA gene database project: improved data processing and web‐based tools. Nucleic Acids Research, 41, D590 – D596.; R Core Team ( 2020 ). R: A language and environment for statistical computing. R Foundation for Statistical Computing https://www.RTest‐project.org/; Read, D. J., Leake, J. R., & Perez‐Moreno, J. ( 2004 ). Mycorrhizal fungi as drivers of ecosystem processes in heathland and boreal forest biomes. Canadian Journal of Botany, 82, 1243 – 1263. https://doi.org/10.1139/b04Test‐123; Riley, R., Salamov, A. A., Brown, D. W., Nagy, L. G., Floudas, D., Held, B. W., & Lindquist, E. A. ( 2013 ). Extensive sampling of basidiomycete genomes demonstrates inadequacy of the white‐rot/brown‐rot paradigm for wood decay fungi. Proceedings of the National Academy of Sciences, 111, 9923 – 9928.; Robroek, B. J. M., Jassey, V. E. J., Kox, M. A. R., Berendsen, R. L., Mills, R. T. E., Cécillon, L., Puissant, J., Meima‐Franke, M., Bakker, P. A. H. M., & Bodelier, P. L. E. ( 2015 ). Peatland vascular plant functional types affect methane dynamics by altering microbial community structure. Journal of Ecology, 103, 925 – 934. https://doi.org/10.1111/1365Test‐2745.12413; Rognes, T., Flouri, T., Nichols, B., Quince, C., & Mahé, F. ( 2016 ). VSEARCH: a versatile open source tool for metagenomics. PeerJ, 4, e2584. https://doi.org/10.7717/peerj.2584Test; Rupp, D., Kane, E. S., Dieleman, C., Keller, J. K., & Turetsky, M. ( 2019 ). Plant functional group effects on peat carbon cycling in a boreal rich fen. Biogeochemistry, 144, 305 – 327. https://doi.org/10.1007/s10533Test‐019‐00590‐5; Russell, L. ( 2020 ). emmeans: Estimated Marginal Means, aka Least‐Squares Means. R package version 1.4.5. https://CRAN.RTest‐project.org/package=emmeans; Rydin, H., & Jeglum, J. K. ( 2013 ). The Biology of Peatlands, 2 nd ed. Oxford University Press.; Schlesenger, W. H., & Bernhart, E. S. ( 2013 ). Biogeochemistry: An analysis of global change. Academic Press.; Shipley, B. ( 2000 ). Cause and correlation in biology: A user’s guide to path analysis, structural equations and causal inference, 1st ed. Cambridge University Press.; Tedersoo, L., Anslan, S., Bahram, M., Põlme, S., Riit, T., Liiv, I., Kõljalg, U., Kisand, V., Nilsson, H., Hildebrand, F., Bork, P., & Abarenkov, K. ( 2015 ). Shotgun metagenomes and multiple primer pair‐barcode combinations of amplicons reveal biases in metabarcoding analyses of fungi. MycoKeys, 10, 1 – 43. https://doi.org/10.3897/mycokeys.10.4852Test; Tfaily, M. M., Wilson, R. M., Cooper, W. T., Kostka, J. E., Hanson, P., & Chanton, J. P. ( 2018 ). Vertical stratification of peat pore water dissolved organic matter composition in a peat bog in northern Minnesota. Journal of Geophysical Research: Biogeosciences, 123, 479 – 494. https://doi.org/10.1002/2017JG004007Test; Thormann, M. N., Currah, R. S., & Bayley, S. E. ( 1999 ). The mycorrhizal status of the dominant vegetation along a peatland gradient in southern boreal Alberta, Canada. Wetlands, 19, 438 – 450. https://doi.org/10.1007/BF03161775Test; Tremblay, J., Singh, K., Fern, A., Kirton, E. S., He, S., Woyke, T., Lee, J., Chen, F., Dangl, J. L., & Tringe, S. G. ( 2015 ). Primer and platform effects on 16S rRNA tag sequencing. Frontiers in Microbiology, 6, 771. https://doi.org/10.3389/fmicb.2015.00771Test; Urbanová, Z., & Barta, J. ( 2016 ). Effects of long‐term drainage on microbial community composition vary between peatland types. Soil Biology and Biochemistry, 92, 16 – 26. https://doi.org/10.1016/j.soilbio.2015.09.017Test; van Breemen, N. ( 1995 ). How Sphagnum bogs down other plants. Trends in Ecology & Evolution, 10, 270 – 275. https://doi.org/10.1016/0169Test‐5347(95)90007‐1; Verbruggen, E., Pena, R., Fernandez, C. W., & Soong, J. L. ( 2017 ). Mycorrhizal interactions with saprotrophs and impact on soil carbon storage. In N. C. Johnson, C. Gehring, & J. Jansa (Eds.), Mycorrhizal mediation of soil: Fertility, structure, and carbon storage (pp. 441 – 460 ). Elsevier Press. https://doi.org/10.1016/B978Test‐0‐12‐804312‐7.00024‐3; Wallén, B. ( 1987 ). Living roots in hummocks go down to water table, living roots in lawns go down ∼15 below table, to the lowest H 2 O table point. Holarctic Ecology, 1987 ( 10 ), 73 – 79.; Wang, M., Tian, J., Bua, Z., Lamit, L. J., Chenc, H., Zhud, Q., & Peng, C. ( 2019 ). Structural and functional differentiation of the microbial community in the surface and subsurface peat of two minerotrophic fens in China. Plant and Soil, 437, 21 – 40. https://doi.org/10.1007/s11104Test‐019‐03962‐w; Ward, S. E., Orwin, K. H., Ostle, N. J., Briones, M. J. I., Thomson, B. C., Griffiths, R. I., Oakley, S., Quirk, H., & Bardgett, R. D. ( 2015 ). Vegetation exerts a greater control on litter decomposition than climate warming in peatlands. Ecology, 96, 113 – 123. https://doi.org/10.1890/14Test‐0292.1; Weigang, Y., Artz, R. R. E., & Johnson, D. ( 2008 ). Species‐specific effects of plants colonising cutover peatlands on patterns of carbon source utilisation by soil microorganism. Soil Biology and Biochemistry, 40, 544 – 549. https://doi.org/10.1016/j.soilbio.2007.09.001Test; Weishampel, P. S., & Bedford, B. L. ( 2006 ). Wetland dicots and monocots differ in colonization by arbuscular mycorrhizal fungi and dark septate endophytes. Mycorrhiza, 16, 495 – 502. https://doi.org/10.1007/s00572Test‐006‐0064‐7; Weltzin, J. F., Bridgham, S. D., Pastor, J., Chen, J., & Harth, C. ( 2003 ). Potential effects of warm‐ ing and drying on peatland plant community composition. Global Change Biolog, 9, 141 – 151. https://doi.org/10.1046/j.1365Test‐2486.2003.00571.x; White, T. J., Bruns, T., Lee, S., & Taylor, J. W. ( 1990 ). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In M. Innis, D. Gelfand, J. Sninsky, & T. White (Eds.), PCR protocols: a guide to methods and applications (pp. 315 – 322 ). Academic Press.; Zhang, Z., Zimmermann, N. E., Stenke, A., Lin, X., Hodson, E. L., Zhu, G., & Poulter, B. ( 2017 ). Wetland methane emissions in future climate change. Proceedings of the National Academy of Sciences, 114, 9647 – 9652. https://doi.org/10.1073/pnas.1618765114Test; Adeoyo, O. R., Pletschke, B. I., & Dames, J. F. ( 2019 ). Molecular identification and antibacterial properties of an ericoid associated mycorrhizal fungus. BMC Microbiology, 19, 178. https://doi.org/10.1186/s12866Test‐019‐1555‐y; Andersen, R., Chapman, S. J., & Artz, R. R. E. ( 2013 ). Microbial communities in natural and disturbed peatlands: A review. Soil Biology and Biochemistry, 57, 979 – 994. https://doi.org/10.1016/j.soilbio.2012.10.003Test; Anderson, M. J. ( 2001 ). A new method for non‐parametric multivariate analysis of variance. Austral Ecology, 26, 32 – 46.; Anderson, M. J., Gorley, R. N., & Clarke, K. R. ( 2008 ). PERMANOVA for PRIMER: Guide to Software and Statistica Methods. PRIMER‐E.; Anderson, M. J., & Willis, T. J. ( 2003 ). Canonical analysis of principal coordinates: a useful method of constrained ordination for ecology. Ecology, 84, 511 – 525.; Artz, R. R. E., Anderson, I. C., Chapman, S. J., Hagn, A., Schloter, M., Potts, J. M., & Campbell, C. D. ( 2007 ). Changes in fungal com‐ munity composition in response to vegetational succession during the natural regeneration of cutover peatlands. Microbial Ecology, 54, 508 – 522. https://doi.org/10.1007/s00248Test‐007‐9220‐7; Asemaninejad, A., Thorn, R. G., Branfireun, B. A., & Lindo, Z. ( 2019 ). Vertical stratification of peatland microbial communities follows a gradient of functional types across hummock–hollow microtopographies. Ecoscience, 26, 249 – 258. https://doi.org/10.1080/11956860.2019.1595932Test; Asemaninejad, A., Thorn, R. G., Branfireuna, B. A., & Lindo, Z. ( 2018 ). Climate change favours specific fungal communities in boreal peatlands. Soil Biology and Biochemistry, 120, 28 – 36. https://doi.org/10.1016/j.soilbio.2018.01.029Test; Asemaninejad, A., Thorn, R. G., & Lindo, Z. ( 2017 ). Vertical distribution of fungi in hollows and hummocks of boreal peatlands. Fungal Ecology, 27, 59 – 68. https://doi.org/10.1016/j.funeco.2017.02.002Test; Bapiri, A., Bååth, E., & Rousk, J. ( 2010 ). Drying‐rewetting cycles affect fungal and bacterial growth differently in an arable soil. Microbial Ecology, 60, 419 – 428. https://doi.org/10.1007/s00248Test‐010‐9723‐5; Bardgett, R. D., Freeman, C., & Ostle, N. J. ( 2008 ). Microbial contributions to climate change through carbon cycle feedbacks. ISME Journal, 2, 805 – 814. https://doi.org/10.1038/ismej.2008.58Test; Barnard, R. L., Osborne, C. A., & Firestone, M. K. ( 2013 ). Responses of soil bacterial and fungal communities to extreme desiccation and rewetting. ISME Journal, 7, 2229 – 2241. https://doi.org/10.1038/ismej.2013.104Test; Bengtsson, F., Rydin, H., & Hájek, T. ( 2018 ). Biochemical determinants of litter quality in 15 species of Sphagnum. Plant and Soil, 425, 161 – 176. https://doi.org/10.1007/s11104Test‐018‐3579‐8; Ben‐Shachar, M. S., Makowski, D., & Lüdecke, D. ( 2020 ). Compute and interpret indices of effect size. CRAN. https://github.com/easystats/effectsizeTest; Bodelier, P. L. E., & Dedysh, S. N. ( 2013 ). Microbiology of wetlands. Frontiers in Microbiology, 4, https://doi.org/10.3389/fmicb.2013.00079Test; Bokulich, N. A., Kaehler, B. D., Rideout, J. R., Dillon, M., Bolyen, E., Knight, R., Huttley, G. A., & Gregory Caporaso, J. ( 2018 ). Optimizing taxonomic classification of marker‐gene amplicon sequences with qiime 2’s q2‐feature‐classifier plugin. Microbiome, 6, 90. https://doi.org/10.1186/s40168Test‐018‐0470‐z; Bolyen, E., Rideout, J. R., Dillon, M. R., Bokulich, N. A., Abnet, C. C., Al‐Ghalith, G. A., Alexander, H., Alm, E. J., Arumugam, M., Asnicar, F., Bai, Y., Bisanz, J. E., Bittinger, K., Brejnrod, A., Brislawn, C. J., Brown, C. T., Callahan, B. J., Caraballo‐Rodríguez, A. M., Chase, J., … Caporaso, J. G. ( 2019 ). Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nature Biotechnology, 37, 852 – 857. https://doi.org/10.1038/s41587Test‐019‐0209‐9; Bragazza, L., Parisod, J., Buttler, A., & Bardgett, R. D. ( 2013 ). Biogeochemical plant–soil microbe feedback in response to climate warming in peatlands. Nature Climate Change, 3, 273 – 277. https://doi.org/10.1038/nclimate1781Test; Breeuwer, A., Robreck, B. J. M., Limpens, J., Heijmans, M. P. D., Schouten, M. G. C., & Berendse, F. ( 2009 ). Decreased summer water table depth affects peatland vegetation. Basic and Applied Ecology, 10, 330 – 339. https://doi.org/10.1016/j.baae.2008.05.005Test; Bridgham, S. D., Pastor, J., Dewey, B., Weltzin, J. F., & Updegraff, K. ( 2008 ). Rapid carbon response of peatlands to climate change. Ecology, 89, 3041 – 3048. https://doi.org/10.1890/08Test‐0279.1; Bushnell, B., Rood, J., & Singer, E. ( 2017 ). BBMerge – Accurate paired shotgun read merging via overlap. PLoS ONE, 12 ( 10 ), e0185056. https://doi.org/10.1371/journal.pone.0185056Test; Cairney, J. W. G., & Burke, R. M. ( 1998 ). Extracellular enzyme activities of the ericoid mycorrhizal endophyte Hymenoscyphus ericae (Read) Korf & Kernan: their likely roles in decomposition of dead plant tissue in soil. Plant and Soil, 205, 181 – 192.; Caporaso, J. G., Lauber, C. L., Walters, W. A., Berg‐Lyons, D., Huntley, J., Fierer, N., & Knight, R. ( 2012 ). Ultra‐high‐throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME Journal, 6, 1621 – 1624. https://doi.org/10.1038/nmeth.f.303Test; Caporaso, J. G., Lauber, C. L., Walters, W. A., Berg‐Lyons, D., Lozupone, C. A., Turnbaugh, P. J., Noah Fierer, N., & Knight, R. ( 2011 ). Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci USA, 108, 4516 – 4522. http://doi.org/10.1073/pnas.1000080107Test; Castellano, M. A. ( 2003 ). Handbook to additional fungal species of special concern in the Northwest Forest Plan. US Department of Agriculture, Forest Service, Pacific Northwest Research Station.; Chanton, J. P., Glaser, P. H., Chasar, L. S., Burdige, D. J., Hines, M. E., Siegel, D. I., Tremblay, L. B., & Cooper, W. T. ( 2008 ). Radiocarbon evidence for the importance of surface vegetation on fermentation and methanogenesis in contrasting types of boreal peatlands. Global Biogeochemical Cycles, 22, https://doi.org/10.1029/2008GB003274Test; Chimner, R. A., Pypker, T. G., Hribljan, J. A., Moore, P. A., & Waddington, J. M. ( 2017 ). Multi‐decadal changes in water table levels alter peatland carbon cycling. Ecosystems, 20, 1042 – 1057. https://doi.org/10.1007/s10021Test‐016‐0092‐x; Coleman‐Derr, D., Desgarennes, D., Fonseca‐Garcia, C., Gross, S., Clingenpeel, S., Woyke, T., & Tringe, S. G. ( 2016 ). Plant compartment and biogeography affect microbiome composition in cultivated and native Agave species. New Phytologist, 209, 798 – 811. https://doi.org/10.1111/nph.13697Test; Conrad, R. ( 1999 ). Contribution of hydrogen to methane production and control of hydrogen concentrations in methanogenic soils and sediments. FEMS Microbiology Ecology, 28, 193 – 202. https://doi.org/10.1111/j.1574Test‐6941.1999.tb00575.x; Crow, S. E., & Wieder, R. K. ( 2005 ). Sources of CO 2 emission from a northern peatland: root respiration, exudation and deposition. Ecology, 86, 1825 – 1834.; Davidson, E. A., & Janssens, I. A. ( 2006 ). Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature, 440, 165 – 173. https://doi.org/10.1038/nature04514Test; De Cáceres, M., & Legendre, P. ( 2009 ). Associations between species and groups of sites: indicesand statistical inference. Ecology, 90, 3566 – 3574. https://doi.org/10.1890/08Test‐1823.1; Dieleman, C. M., Branfireun, B. A., McLaughlin, J. W., & Lindo, Z. ( 2016 ). Enhanced carbon release under future climate conditions in a peatland mesocosm experiment: the role of phenolic compounds. Plant and Soil, 400, 81 – 91. https://doi.org/10.1007/s11104Test‐015‐2713‐0; Dorrepaal, E. E., Cornelissen, J. H. C., Aerts, R., Wallén, B., & van Logtestijn, R. S. P. ( 2005 ). Are growth forms consistent predictors of leaf litter quality and decomposability across peatlands along a latitudinal gradient? Journal of Ecology, 93, 817 – 828. https://doi.org/10.1111/j.1365Test‐2745.2005.01024.x; Emsens, W.‐J., van Diggelen, R., Aggenbach, C. J. S., Cajthaml, T., Frouz, J., Klimkowska, A., Kotowski, W., Kozub, L., Liczner, Y., Seeber, E., Silvennoinen, H., Tanneberger, F., Vicena, J., Wilk, M., & Verbruggen, E. ( 2020 ). Recovery of fen peatland microbiomes and predicted functional profiles after rewetting. ISME Journal, 14, 1701 – 1712. https://doi.org/10.1038/s41396Test‐020‐0639‐x.; Freeman, C., Ostle, N., & Kang, H. ( 2001 ). An enzymic ‘latch’ on a global carbon store. Nature, 409, 149. https://doi.org/10.1038/35051650Test; Frøslev, T. G., Kjøller, R., Bruun, H. H., Ejrnæs, R., Brunbjerg, A. K., Pietroni, C., & Hansen, A. J. ( 2017 ). Algorithm for post‐clustering curation of DNA amplicon data yields reliable biodiversity estimates. Nature Communications, 8, 1188. https://doi.org/10.1038/s41467Test‐017‐01312‐x; Golovchenko, A. V., Dobrovol’skaya, N. G., & Inisheva, L. I. ( 2002 ). Structure and stocks of microbial biomass in oligotrophic peat bogs of the southern Taiga in western Siberia. Eurasian Soil Science, 35, 1296 – 1301.; Goslee, S. C., & Urban, D. L. ( 2007 ). The ecodist package for dissimilarity‐based analysis of ecological data. Journal of Statistical Software, 22, 1 – 19.; Gulden, G., Stensrud, Ø., Shalchian‐Tabrizi, K., & Kauserud, H. ( 2005 ). Galerina Earle: a polyphyletic genus in the consortium of dark‐spored agarics. Mycologia, 97, 823 – 837.; Hough, M., McClure, A., Bolduc, B., Dorrepaal, E., Saleska, S., Klepac‐Ceraj, V., & Rich, V. ( 2020 ). Biotic and environmental drivers of plant microbiomes across a permafrost thaw gradient. Frontiers in Microbiology, 11, 796. https://doi.org/10.3389/fmicb.2020.00796Test; Ihrmark, K., Bödeker, I. T. M., Cruz‐Martinez, K., Friberg, H., Kubartova, A., Schenck, J., Strid, Y., Stenlid, J., Brandström‐Durling, M., Clemmensen, K. E., & Lindahl, B. D. ( 2012 ). New primers to amplify the fungal ITS2 region – evaluation by 454‐sequencing of artificial and natural communities. FEMS Microbiology Ecology, 82, 666 – 677. https://doi.org/10.1111/j.1574Test‐6941.2012.01437.x; Jassey, V. E. J., Reczuga, M. K., Zielińska, M., Słowińska, S., Robroek, B. J. M., Mariotte, P., Seppey, C. V. W., Lara, E., Barabach, J., Słowiński, M., Bragazza, L., Chojnicki, B. H., Lamentowicz, M., Mitchell, E. A. D., & Buttler, A. ( 2018 ). Tipping point in plant–fungal interactions under severe drought causes abrupt rise in peatland ecosystem respiration. Global Change Biology, 24, 972 – 986. https://doi.org/10.1111/gcb.13928Test; Joosten, H., & Couwenberg, J. ( 2008 ). Peatlands and carbon. In F. Parish, A. Sirin, D. Charman, H. Joosten, T. Minayeva, M. Silvius, & L. Stringer (Eds.), Assessment on peatlands, biodiversity and climate change: Main report (pp. 99 – 117 ). Wetlands International.; Junk, W. J., An, S., Finlayson, C. M., Gopal, B., Květ, J., Mitchell, S. A., Mitsch, W. J., & Robarts, R. D. ( 2013 ). Current state of knowledge regarding the world’s wetlands and their future under global climate change: A synthesis. Aquatic Sciences, 75, 151 – 167. https://doi.org/10.1007/s00027Test‐012‐0278‐z; Kane, E. S., Veverica, T. J., Tfaily, M. M., Lilleskov, E. A., Meingast, K. M., Kolka, R. K., & Chimner, R. A. ( 2019 ). Reduction‐oxidation potential and dissolved organic matter composition in northern peat soil: interactive controls of water table position and plant functional groups. Geophysical Research: Biogeosciences, 124, 3600 – 3617. https://doi.org/10.1029/2019JG005339Test; Kavanagh, K. ( 2011 ). Fungi: Biology and applications. John Wiley & Sons.; Kennedy, P. G., Mielke, L. A., & Nguyen, N. H. ( 2018 ). Ecological responses to forest age, habitat, and host vary by mycorrhizal type in boreal peatlands. Mycorrhiza, 28, 315 – 328. https://doi.org/10.1007/s00572Test‐018‐0821‐4; Kõljalg, U., Nilsson, R. H., Abarenkov, K., Tedersoo, L., Taylor, A. F. S., Bahram, M., Bates, S. T., Bruns, T. D., Bengtsson‐Palme, J., Callaghan, T. M., Douglas, B., Drenkhan, T., Eberhardt, U., Dueñas, M., Grebenc, T., Griffith, G. W., Hartmann, M., Kirk, P. M., Kohout, P., … Larsson, K.‐H. ( 2013 ). Towards a unified paradigm for sequence‐based identification of fungi. Molecular Ecology, 22, 5271 – 5277. https://doi.org/10.1111/mec.12481Test; Kostka, J. E., Weston, D. J., Glass, J. B., Lilleskov, E. A., Shaw, A. J., & Turetsky, M. R. ( 2016 ). The Sphagnum microbiome: new insights from an ancient plant lineage. New Phytologist, 211, 57 – 64.; Kotiaho, M., Fritze, H., Merilä, P., Tuomivirta, T., Väliranta, M., Korhola, A., Karofeld, E., & Tuittila, E.‐S. ( 2013 ). Actinobacteria community structure in the peat profile of boreal bogs follows a variation in the microtopographical gradient similar to vegetation. Plant and Soil, 369, 103 – 114. https://doi.org/10.1007/s11104Test‐012‐1546‐3; Kuznetsova, A., Brockhoff, P. B., & Christensen, R. H. B. ( 2017 ). lmerTest Package: Tests in linear mixed effects models. Journal of Statistical Software, 82, 1 – 26. https://doi.org/10.18637/jss.v082.i13Test; Lamers, L. P. M., van Diggelen, J. M. H., Op den Camp, H. J. M., Visser, E. J. W., Lucassen, E. C. H. E. T., Vile, M. A., Jetten, M. S. M., Smolders, A. J. P., & Roelofs, J. G. M. ( 2012 ). Microbial transformations of nitrogen, sulfur, and iron dictate vegetation composition in wetlands: A review. Frontiers in Microbiology, 3, 156. https://doi.org/10.3389/fmicb.2012.00156Test; Lamit, L. J., Romanowicz, K. J., Potvin, L. R., Rivers, A. R., Singh, K., Lennon, J. T., Tringe, S. G., Kane, E. S., & Lilleskov, E. A. ( 2017 ). Patterns and drivers of fungal community depth stratification in Sphagnum peat. FEMS Microbiology Ecology, 93, https://doi.org/10.1093/femsec/fix082Test; Lefcheck, J. S. ( 2016 ). piecewiseSEM: Piecewise structural equation modeling in R for ecology, evolution, and systematics. Methods in Ecology and Evolution, 7, 573 – 579. https://doi.org/10.1111/2041Test‐210X.12512; Lennon, J. T., Aanderud, Z. T., Lehmkuhl, B. K., & Schoolmaster, D. R. ( 2012 ). Mapping the niche space of soil microorganisms using taxonomy and traits. Ecology, 93, 1867 – 1879. https://doi.org/10.1890/11Test‐1745.1; Lichstein, J. W. ( 2007 ). Multiple regression on distance matrices: A multivariate spatial analysis tool. Plant Ecology, 188, 117 – 131. https://doi.org/10.1007/s11258Test‐006‐9126‐3; Lin, X., Tfaily, M. M., Steinweg, J. M., Chanton, P., Esson, K., Yang, Z. K., Chanton, J. P., Cooper, W., Schadt, C. W., & Kostka, J. E. ( 2014 ). Microbial community stratification linked to utilization of carbohydrates and phosphorus limitation in a boreal peatland at Marcell Experimental Forest, Minnesota, USA. Applied and Environmental Microbiology, 80, 3518 – 3530. https://doi.org/10.1128/AEM.00205Test‐14; Louca, S., Parfrey, L. W., & Doebeli, M. ( 2016 ). Decoupling function and taxonomy in the global ocean microbiome. Science, 353, 1272 – 1277. https://doi.org/10.1126/science.aaf4507Test; Malhotra, A., Brice, D. J., Childs, J., Graham, J. D., Hobbie, E. A., Vander Stel, H., Feron, S. C., Hanson, P. J., & Iversen, C. M. ( 2020 ). Peatland warming strongly increases fine‐root growth. Proceedings of the National Academy of Sciences, 117, 17627 – 17634. https://doi.org/10.1073/pnas.2003361117Test; Martin, M. ( 2011 ). Cutadapt removes adapter sequences from high‐throughput sequencing reads. EMBnet.journal, 17, 10 – 12. https://doi.org/10.14806/ej.17.1.200Test; Martino, E., Morin, E., Grelet, G.‐A., Kuo, A., Kohler, A., Daghino, S., Barry, K. W., Cichocki, N., Clum, A., Dockter, R. B., Hainaut, M., Kuo, R. C., LaButti, K., Lindahl, B. D., Lindquist, E. A., Lipzen, A., Khouja, H.‐R., Magnuson, J., Murat, C., … Perotto, S. ( 2018 ). Comparative genomics and transcriptomics depict ericoid mycorrhizal fungi as versatile saprotrophs and plant mutualists. New Phytologist, 217, 1213 – 1229. https://doi.org/10.1111/nph.14974Test; Mitsch, W. J., & Gosselink, J. G. ( 2015 ). Wetlands, 5th ed. Wiley.; Moomaw, W. R., Chmura, G. L., Davies, G. T., Finlayson, C. M., Middleton, B. A., Natali, S. M., Perry, J. E., Roulet, N., & Sutton‐Grier, A. E. ( 2018 ). Wetlands in a changing climate: science, policy and management. Wetlands, 38, 183 – 205. https://doi.org/10.1007/s13157Test‐018‐1023‐8; Moore, T. R., Bubier, J. L., Frolking, S. E., Lafleur, P. M., & Roulet, N. T. ( 2002 ). Plant biomass and production and CO 2 exchange in an ombrotrophic bog. Journal of Ecology, 90, 25 – 36. https://doi.org/10.1046/j.0022Test‐0477.2001.00633.x; Nagendran, S., Hallen‐Adams, H. E., Paper, J. M., Aslam, N., & Walton, J. D. ( 2009 ). Reduced genomic potential for secreted plant cell‐wall‐degrading enzymes in the ectomycorrhizal fungus Amanita bisporigera, based on the secretome of Trichoderma reesei. Fungal Genetics and Biology, 46, 427 – 435. https://doi.org/10.1016/j.fgb.2009.02.001Test; Nguyen, N. H., Song, Z., Bates, S. T., Branco, S., Tedersoo, L., Menke, J., Schilling, J. S., & Kennedy, P. G. ( 2016 ). FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecology, 20, 241 – 248. https://doi.org/10.1016/j.funeco.2015.06.006Test

  3. 3
  4. 4
    دورية أكاديمية