يعرض 1 - 4 نتائج من 4 نتيجة بحث عن '"Nava Segev"', وقت الاستعلام: 0.62s تنقيح النتائج
  1. 1

    المصدر: PLoS Genetics, Vol 13, Iss 9, p e1007020 (2017)
    PLoS Genetics

    الوصف: In the conserved autophagy pathway, the double-membrane autophagosome (AP) engulfs cellular components to be delivered for degradation in the lysosome. While only sealed AP can productively fuse with the lysosome, the molecular mechanism of AP closure is currently unknown. Rab GTPases, which regulate all intracellular trafficking pathways in eukaryotes, also regulate autophagy. Rabs function in GTPase modules together with their activators and downstream effectors. In yeast, an autophagy-specific Ypt1 GTPase module, together with a set of autophagy-related proteins (Atgs) and a phosphatidylinositol-3-phosphate (PI3P) kinase, regulates AP formation. Fusion of APs and endosomes with the vacuole (the yeast lysosome) requires the Ypt7 GTPase module. We have previously shown that the Rab5-related Vps21, within its endocytic GTPase module, regulates autophagy. However, it was not clear which autophagy step it regulates. Here, we show that this module, which includes the Vps9 activator, the Rab5-related Vps21, the CORVET tethering complex, and the Pep12 SNARE, functions after AP expansion and before AP closure. Whereas APs are not formed in mutant cells depleted for Atgs, sealed APs accumulate in cells depleted for the Ypt7 GTPase module members. Importantly, depletion of individual members of the Vps21 module results in a novel phenotype: accumulation of unsealed APs. In addition, we show that Vps21-regulated AP closure precedes another AP maturation step, the previously reported PI3P phosphatase-dependent Atg dissociation. Our results delineate three successive steps in the autophagy pathway regulated by Rabs, Ypt1, Vps21 and Ypt7, and provide the first insight into the upstream regulation of AP closure.
    Author summary In autophagy, a cellular recycling pathway, the double-membrane autophagosome (AP) engulfs excess or damaged cargo and delivers it for degradation in the lysosome for the reuse of its building blocks. While plenty of information is currently available regarding AP formation, expansion and fusion, not much is known about the regulation of AP closure, which is required for fusion of APs with the lysosome. Here, we use yeast genetics to characterize a novel mutant phenotype, accumulation of unsealed APs, and identify a role for the Rab5-related Vps21 GTPase in this process. Rab GTPases function in modules that include upstream activators and downstream effectors. We have previously shown that the same Vps21 module that regulates endocytosis also plays a role in autophagy. Using single and double mutant analyses, we find that this module is important for AP closure. Moreover, we delineate three Rab GTPase-regulated steps in the autophagy pathway: AP formation, closure, and fusion, which are regulated by Ypt1, Vps21 and Ypt7, respectively. This study provides the first insight into the mechanism of the elusive process of AP closure.

  2. 2

    المؤلفون: Nava Segev, Zhanna Lipatova

    المصدر: PLoS Genetics
    PLoS Genetics, Vol 11, Iss 7, p e1005390 (2015)

    الوصف: The endoplasmic-reticulum quality-control (ERQC) system shuttles misfolded proteins for degradation by the proteasome through the well-defined ER-associated degradation (ERAD) pathway. In contrast, very little is known about the role of autophagy in ERQC. Macro-autophagy, a collection of pathways that deliver proteins through autophagosomes (APs) for degradation in the lysosome (vacuole in yeast), is mediated by autophagy-specific proteins, Atgs, and regulated by Ypt/Rab GTPases. Until recently, the term ER-phagy was used to describe degradation of ER membrane and proteins in the lysosome under stress: either ER stress induced by drugs or whole-cell stress induced by starvation. These two types of stresses induce micro-ER-phagy, which does not use autophagic organelles and machinery, and non-selective autophagy. Here, we characterize the macro-ER-phagy pathway and uncover its role in ERQC. This pathway delivers 20–50% of certain ER-resident membrane proteins to the vacuole and is further induced to >90% by overexpression of a single integral-membrane protein. Even though such overexpression in cells defective in macro-ER-phagy induces the unfolded-protein response (UPR), UPR is not needed for macro-ER-phagy. We show that macro-ER-phagy is dependent on Atgs and Ypt GTPases and its cargo passes through APs. Moreover, for the first time the role of Atg9, the only integral-membrane core Atg, is uncoupled from that of other core Atgs. Finally, three sequential steps of this pathway are delineated: Atg9-dependent exit from the ER en route to autophagy, Ypt1- and core Atgs-mediated pre-autophagsomal-structure organization, and Ypt51-mediated delivery of APs to the vacuole.
    Author Summary ER-quality control (ERQC) ensures delivery of “native” proteins through the secretory pathway. Currently, ER-associated degradation (ERAD), which delivers misfolded proteins for degradation by the proteasome, is considered a major ERQC pathway, with autophagy as its backup. Until now, the role of autophagy, which shuttles cellular components for degradation in the lysosome through autophagosomes (APs), in ERQC was ill defined. Recently, the process of ER degradation induced by ER stress was defined as micro-ER-phagy, which does not require autophagic machinery and does not pass through APs. Here, we characterize the macro-ER-phagy pathway, which delivers excess membrane proteins for degradation in the lysosome, as a novel ERQC pathway. This pathway functions in the absence of cellular or ER stress and can be further induced by overexpression of a single integral-membrane protein. Unlike the micro-ER-phagy pathway, the marco-ER-phagy pathway requires core autophagy-specific proteins, Atgs, and Ypt/Rab GTPases. In addition, for the first time, the function of the only membrane core Atg, Atg9, was uncoupled from that of the other core Atgs. Whereas Atg9 plays a role in the assembly of ER-to-autophagy membranes (ERAM), other core Atgs and Ypt1 assemble the Atg-protein complex on ERAM to form the pre-autophagosomal structure.

  3. 3

    المؤلفون: Nava Segev, Zhanna Lipatova

    المصدر: Cellular logistics. 4(3)

    الوصف: A prevailing question in the Ypt/Rab field is whether these conserved GTPases are specific to cellular compartments. The established role for Ypt1 and its human homolog Rab1 is in endoplasmic reticulum (ER)-to-Golgi transport. More recently these regulators were implicated also in autophagy. Two different TRAPP complexes, I and III, were identified as the guanine-nucleotide-exchange factors (GEFs) of Ypt1 in ER-to-Golgi transport and autophagy, respectively. Confusingly, Ypt1 and TRAPP III were also suggested to regulate endosome-to-Golgi transport, implying that they function at multiple cellular compartments, and bringing into question the nature of Ypt/Rab specificity. Recently, we showed that the role of TRAPP III and Ypt1 in autophagy occurs at the ER and that they do not regulate endosome-to-Golgi transport. Here, we discuss the significance of this conclusion to the idea that Ypt/Rabs are specific to cellular compartments. We postulate that Ypt1 regulates 2 alternative routes emanating from the ER toward the Golgi and the lysosome/vacuole. We further propose that the secretory and endocytic/lysosomal pathways intersect in 2 junctures, and 2 Ypts, Ypt1 and Ypt31, coordinate transport in the 2 intersections: Ypt1 links ER-to-Golgi and ER-to-autophagy transport, whereas Ypt31 links Golgi-to-plasma membrane (PM) transport with PM-to-Golgi recycling through endosomes.

  4. 4

    المصدر: Molecular Biology of the Cell

    الوصف: Ypt1 GTPase, in the context of an autophagy-specific module, regulates ER-phagy. Because Ypt1 is a known regulator of ER-to-Golgi transport, this means that a single Ypt/Rab can regulate two alternative transport steps from one compartment, the ER, to two different destinations, the Golgi and the autophagy pathway.
    Accumulation of misfolded proteins on intracellular membranes has been implicated in neurodegenerative diseases. One cellular pathway that clears such aggregates is endoplasmic reticulum autophagy (ER-phagy), a selective autophagy pathway that delivers excess ER to the lysosome for degradation. Not much is known about the regulation of ER-phagy. The conserved Ypt/Rab GTPases regulate all membrane trafficking events in eukaryotic cells. We recently showed that a Ypt module, consisting of Ypt1 and autophagy-specific upstream activator and downstream effector, regulates the onset of selective autophagy in yeast. Here we show that this module acts at the ER. Autophagy-specific mutations in its components cause accumulation of excess membrane proteins on aberrant ER structures and induction of ER stress. This accumulation is due to a block in transport of these membranes to the lysosome, where they are normally cleared. These findings establish a role for an autophagy-specific Ypt1 module in the regulation of ER-phagy. Moreover, because Ypt1 is a known key regulator of ER-to-Golgi transport, these findings establish a second role for Ypt1 at the ER. We therefore propose that individual Ypt/Rabs, in the context of distinct modules, can coordinate alternative trafficking steps from one cellular compartment to different destinations.