دورية أكاديمية

Pharmacogenetic Study of Trabectedin-Induced Severe Hepatotoxicity in Patients with Advanced Soft Tissue Sarcoma.

التفاصيل البيبلوغرافية
العنوان: Pharmacogenetic Study of Trabectedin-Induced Severe Hepatotoxicity in Patients with Advanced Soft Tissue Sarcoma.
المؤلفون: Maillard, Maud, Chevreau, Christine, Le Louedec, Félicien, Cassou, Manon, Delmas, Caroline, Gourdain, Laure, Blay, Jean-Yves, Cupissol, Didier, Bompas, Emmanuelle, Italiano, Antoine, Isambert, Nicolas, Delcambre-Lair, Corinne, Penel, Nicolas, Bertucci, François, Guillemet, Cécile, Plenecassagnes, Julien, Foulon, Stéphanie, Chatelut, Étienne, Le Cesne, Axel, Thomas, Fabienne
المصدر: Cancers; Dec2020, Vol. 12 Issue 12, p3647, 1p
مصطلحات موضوعية: THERAPEUTIC use of antineoplastic agents, ALLELES, ANTINEOPLASTIC agents, CANCER patients, HEPATOTOXICOLOGY, LIVER cells, OXIDOREDUCTASES, PHARMACOGENOMICS, SARCOMA, SOFT tissue tumors, ODDS ratio, GENOTYPES
مستخلص: Simple Summary: Trabectedin is a cytotoxic drug used for the treatment of advanced soft tissue sarcoma. One of the most frequent side effects is hepatotoxicity, which occurs in nearly 40% of patients. In this pharmacogenetic study, we aimed to identify genetic polymorphisms that could impair the functionality of liver proteins—as metabolic enzymes or membrane transporters—involved in the production and the elimination of trabectedin and/or its metabolites from hepatocytes. In a prospective cohort of 63 patients, we showed that some variants of P-gp and MRP2 transporters and the well-known CYP3A5*3 variant were associated with hepatotoxicity. With these findings, we provide new biomarkers that might be useful to prevent the risk of hepatotoxicity in patients treated with trabectedin. However, this study is limited by the low number of patients included and should be validated on larger cohorts before any clinical application. Hepatotoxicity is an important concern for nearly 40% of the patients treated with trabectedin for advanced soft tissue sarcoma (ASTS). The mechanisms underlying these liver damages have not yet been elucidated but they have been suggested to be related to the production of reactive metabolites. The aim of this pharmacogenetic study was to identify genetic variants of pharmacokinetic genes such as CYP450 and ABC drug transporters that could impair the trabectedin metabolism in hepatocytes. Sixty-three patients with ASTS from the TSAR clinical trial (NCT02672527) were genotyped by next-generation sequencing for 11 genes, and genotype–toxicity association analyses were performed with R package SNPassoc. Among the results, ABCC2 c.1249A allele (rs2273697) and ABCG2 intron variant c.-15994T (rs7699188) were associated with an increased risk of severe cytolysis, whereas ABCC2 c.3563A allele had a protective effect, as well as ABCB1 variants rs2032582 and rs1128503 (p-value < 0.05). Furthermore, CYP3A5*1 rs776746 (c.6986A > G) increased the risk of severe overall hepatotoxicity (p = 0.012, odds ratio (OR) = 5.75), suggesting the implication of metabolites in the hepatotoxicity. However, these results did not remain significant after multiple analysis correction. These findings need to be validated on larger cohorts of patients, with mechanistic studies potentially being able to validate the functional consequences of these variants. [ABSTRACT FROM AUTHOR]
Copyright of Cancers is the property of MDPI and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
قاعدة البيانات: Complementary Index
الوصف
تدمد:20726694
DOI:10.3390/cancers12123647