دورية أكاديمية

3-Hydroxytanshinone Inhibits the Activity of Hypoxia-Inducible Factor 1-α by Interfering with the Function of α-Enolase in the Glycolytic Pathway.

التفاصيل البيبلوغرافية
العنوان: 3-Hydroxytanshinone Inhibits the Activity of Hypoxia-Inducible Factor 1-α by Interfering with the Function of α-Enolase in the Glycolytic Pathway.
المؤلفون: Son, Tae Hyun, Kim, Shin-Hye, Shin, Hye-Lim, Kim, Dongsoo, Kim, Hwan Gyu, Choi, Yongseok, Choi, Sik-Won
المصدر: Molecules; May2024, Vol. 29 Issue 10, p2218, 17p
مصطلحات موضوعية: HYPOXIA-inducible factors, CHINESE medicine, METABOLIC regulation, AMP-activated protein kinases
مستخلص: Tumor cells in hypoxic conditions control cancer metabolism and angiogenesis by expressing HIF-1α. Tanshinone is a traditional Chinese medicine that has been shown to possess antitumor properties and exerts a therapeutic impact on angiogenesis. However, the precise molecular mechanism responsible for the antitumor activity of 3-Hydroxytanshinone (3-HT), a type of tanshinone, has not been fully understood. Therefore, our study aimed to investigate the mechanism by which 3-HT regulates the expression of HIF-1α. Our findings demonstrate that 3-HT inhibits HIF-1α activity and expression under hypoxic conditions. Additionally, 3-HT inhibits hypoxia-induced angiogenesis by suppressing the expression of VEGF. Moreover, 3-HT was found to directly bind to α-enolase, an enzyme associated with glycolysis, resulting in the suppression of its activity. This inhibition of α-enolase activity by 3-HT leads to the blockade of the glycolytic pathway and a decrease in glycolysis products, ultimately altering HIF1-α expression. Furthermore, 3-HT negatively regulates the expression of HIF-1α by altering the phosphorylation of AMP-activated protein kinase (AMPK). Our study's findings elucidate the mechanism by which 3-HT regulates HIF-1α through the inhibition of the glycolytic enzyme α-enolase and the phosphorylation of AMPK. These results suggest that 3-HT holds promise as a potential therapeutic agent for hypoxia-related angiogenesis and tumorigenesis. [ABSTRACT FROM AUTHOR]
Copyright of Molecules is the property of MDPI and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
قاعدة البيانات: Complementary Index
الوصف
تدمد:14203049
DOI:10.3390/molecules29102218