يعرض 1 - 10 نتائج من 18 نتيجة بحث عن '"Bernardi, Luciano"', وقت الاستعلام: 1.73s تنقيح النتائج
  1. 1
  2. 2
    مراجعة

    المؤلفون: Bernardi, Luciano, Bianchi, Lucio

    المساهمون: Research Programs Unit, Diabetes and Obesity Research Program

    وصف الملف: application/pdf

    العلاقة: Bernardi , L & Bianchi , L 2016 , ' Integrated Cardio-Respiratory Control : Insight in Diabetes ' , Current diabetes reports. , vol. 16 , no. 11 , 107 . https://doi.org/10.1007/s11892-016-0804-9Test; 84988531508; 7af65861-f2d1-489a-8fa4-e129e0fbe50c; http://hdl.handle.net/10138/229903Test; 000388592700005

  3. 3
    دورية أكاديمية
  4. 4
    دورية أكاديمية

    المساهمون: Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA, Department of Internal Medicine, IRCCS S.Matteo and University of Pavia, Pavia, Italy, Department of Internal Medicine, University of Tor Vergata, Rome, Italy, Department of Medicine, University of Birmingham, Birmingham, UK, Copenhagen University Hospital, Copenhagen, Denmark, Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University, Düsseldorf, Germany, Department of Medicine, Semmelweis University, Budapest, Hungary, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA, Department of Neurology, Mayo Clinic, Rochester, MN, USA, Diabetes Research Unit, Sheffield Teaching Hospitals, Sheffield, UK, Service d'Endocrinologie‐Diabétologie‐Nutrition, Hôpital Jean Verdier, AP‐HP, Université Paris Nord, CRNH‐IdF, Bondy, France, Department of Internal Medicine, IRCCS S. Matteo and University of Pavia, Pavia, Italy.

    وصف الملف: application/pdf

    العلاقة: Bernardi, Luciano; Spallone, Vincenza; Stevens, Martin; Hilsted, Jannik; Frontoni, Simona; Pop‐busui, Rodica; Ziegler, Dan; Kempler, Peter; Freeman, Roy; Low, Phillip; Tesfaye, Solomon; Valensi, Paul (2011). "Methods of investigation for cardiac autonomic dysfunction in human research studies." Diabetes/Metabolism Research and Reviews 27(7): 654-664.; https://hdl.handle.net/2027.42/86917Test; Diabetes/Metabolism Research and Reviews; England JD, Gronseth GS, Franklin G, et al.; American Academy of Neurology. Practice parameter: evaluation of distal symmetric polyneuropathy: role of autonomic testing, nerve biopsy, and skin biopsy (an evidence‐based review). Report of the American Academy of Neurology, American Association of Neuromuscular and Electrodiagnostic Medicine, and American Academy of Physical Medicine and Rehabilitation. Neurology 2009; 72: 177 – 184.; Malliani A, Pagani M, Montano N, Mela GS. Sympathovagal balance: a reappraisal. Circulation 1998; 98 ( 23 ): 2640 – 2643.; Pomeranz B, Macaulay RJ, Caudill MA, et al. Assessment of autonomic function in humans by heart rate spectral analysis. Am J Physiol 1985; 248: H151 – H153.; de Boer RW, Karemaker JM, Strackee J. Hemodynamic fluctuations and baroreflex sensitivity in humans: a beat‐to‐beat model. Am J Physiol 1987; 253: H680 – H689.; Sleight P, La Rovere MT, Mortara A, et al. Physiology and pathophysiology of heart rate and blood pressure variability in humans: is power spectral analysis largely an index of baroreflex gain? Clin Sci (Lond) 1995; 88 ( 1 ): 103 – 109.; Spadacini G, Passino C, Leuzzi S, et al. Frequency‐dependent baroreflex control of blood pressure and heart rate during physical exercise. Int J Cardiol 2006; 107 ( 2 ): 171 – 179.; Bernardi L, Hayoz D, Wenzel R, et al. Synchronous and baroceptor‐sensitive oscillations in skin microcirculation: evidence for central autonomic control. Am J Physiol 1997; 273: H1867 – H1878.; Saul JP, Berger RD, Albrecht P, Stein SP, Chen MH, Cohen RJ. Transfer function analysis of the circulation: unique insights into cardiovascular regulation. Am J Physiol 1991; 261: H1231 – H1245.; Montano N, Ruscone TG, Porta A, Lombardi F, Pagani M, Malliani A. Power spectrum analysis of heart rate variability to assess the changes in sympathovagal balance during graded orthostatic tilt. Circulation 1994; 90 ( 4 ): 1826 – 1831.; Pagani M, Malliani A. Interpreting oscillations of muscle sympathetic nerve activity and heart rate variability. J Hypertens 2000; 18 ( 12 ): 1709 – 1719.; DeBeck LD, Petersen SR, Jones KE, Stickland MK. Heart rate variability and muscle sympathetic nerve activity response to acute stress: the effect of breathing. Am J Physiol Regul Integr Comp Physiol 2010; 299 ( 1 ): R80 – R91.; Bernardi L, Bianchini B, Spadacini G, et al. Demonstrable cardiac reinnervation after human heart transplantation by carotid baroreflex modulation of RR interval. Circulation 1995; 92 ( 10 ): 2895 – 2903.; Bernardi L, Salvucci F, Suardi R, et al. Evidence for an intrinsic mechanism regulating heart rate variability in the transplanted and the intact heart during submaximal dynamic exercise? Cardiovasc Res 1990; 24 ( 12 ): 969 – 981.; Bernardi L, Valle F, Coco M, Calciati A, Sleight P. Physical activity influences heart rate variability and very‐low‐frequency components in Holter electrocardiograms. Cardiovasc Res 1996; 32 ( 2 ): 234 – 237.; Heart rate variability: standards of measurement, physiological interpretation and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Circulation 1996; 93 ( 5 ): 1043 – 1065.; Pagani M, Malfatto G, Pierini S, et al. Spectral analysis of heart rate variability in the assessment of autonomic diabetic neuropathy. J Auton Nerv Syst 1988; 23 ( 2 ): 143 – 153.; Gulli G, Fattor B, Marchesi M. Cross‐spectral analysis of cardiovascular variables in supine diabetic patients. Clin Auton Res 2005; 15 ( 2 ): 92 – 98.; Zoppini G, Cacciatori V, Gemma ML, et al. Effect of moderate aerobic exercise on sympatho‐vagal balance in Type 2 diabetic patients. Diabet Med 2007; 24 ( 4 ): 370 – 376.; Bernardi L, Rossi M, Leuzzi S, et al. Reduction of 0.1 Hz microcirculatory fluctuations as evidence of sympathetic dysfunction in insulin‐dependent diabetes. Cardiovasc Res 1997; 34 ( 1 ): 185 – 191.; Bernardi L. Clinical evaluation of arterial baroreflex activity in diabetes. Diabetes Nutr Metab 2000; 13 ( 6 ): 331 – 340.; Maser RE, Lenhard MJ. An overview of the effect of weight loss on cardiovascular autonomic function. Curr Diabetes Rev 2007; 3: 204 – 211.; Grassi G, Cattaneo BM, Seravalle G, Lanfranchi A, Mancia G. Baroreflex control of sympathetic nerve activity in essential and secondary hypertension. Hypertension 1998; 31 ( 1 ): 68 – 72.; La Rovere MT, Bigger JT Jr, Marcus FI, Mortara A, Schwartz PJ. Baroreflex sensitivity and heart‐rate variability in prediction of total cardiac mortality after myocardial infarction. ATRAMI (Autonomic Tone and Reflexes After Myocardial Infarction) Investigators. Lancet 1998; 351 ( 9101 ): 478 – 484.; La Rovere MT, Pinna GD, Maestri R, et al. Prognostic implications of baroreflex sensitivity in heart failure patients in the beta‐blocking era. J Am Coll Cardiol 2009; 53 ( 2 ): 193 – 199.; Johansson M, Gao SA, Friberg P, et al. Baroreflex effectiveness index and baroreflex sensitivity predict all‐cause mortality and sudden death in hypertensive patients with chronic renal failure. J Hypertens 2007; 25 ( 1 ): 163 – 168.; Gerritsen J, Dekker JM, TenVoorde BJ, et al. Impaired autonomic function is associated with increased mortality, especially in subjects with diabetes, hypertension, or a history of cardiovascular disease: the Hoorn Study. Diabetes Care 2001; 24 ( 10 ): 1793 – 1798.; Frattola A, Parati G, Gamba P, et al. Time and frequency domain estimates of spontaneous baroreflex sensitivity provide early detection of autonomic dysfunction in diabetes mellitus. Diabetologia 1997; 40 ( 12 ): 1470 – 1475.; Weston PJ, James MA, Panerai RB, McNally PG, Potter JF, Thurston H. Evidence of defective cardiovascular regulation in insulin‐dependent diabetic patients without clinical autonomic dysfunction. Diabetes Res Clin Pract 1998; 42 ( 3 ): 141 – 148.; Rosengård‐Bärlund M, Bernardi L, Fagerudd J, et al.; FinnDiane Study Group. Early autonomic dysfunction in type 1 diabetes: a reversible disorder? Diabetologia 2009; 52 ( 6 ): 1164 – 1172.; Loimaala A, Huikuri HV, Kööbi T, Rinne M, Nenonen A, Vuori I. Exercise training improves baroreflex sensitivity in type 2 diabetes. Diabetes 2003; 52 ( 7 ): 1837 – 1842.; Alvarez GE, Davy BM, Ballard TP, Beske SD, Davy KP. Weight loss increases cardiovagal baroreflex function in obese young and older men. Am J Physiol 2005; 289 ( 4 ): E665 – E669.; Goso Y, Asanoi H, Ishise H, et al. Respiratory modulation of muscle sympathetic nerve activity in patients with chronic heart failure. Circulation 2001; 104 ( 4 ): 418 – 423.; Monahan KD. Effect of aging on baroreflex function in humans. Am J Physiol 2007; 293 ( 1 ): R3 – R12.; Huggett RJ, Scott EM, Gilbey SG, Bannister J, Mackintosh AF, Mary DA. Disparity of autonomic control in type 2 diabetes mellitus. Diabetologia 2005; 48 ( 1 ): 172 – 179.; Hoffman RP, Sinkey CA, Anderson EA. Microneurographically determined muscle sympathetic nerve activity levels are reproducible in insulin‐dependent diabetes mellitus. J Diabetes Complications 1998; 12 ( 6 ): 307 – 310.; Fagius J, Wallin BG. Sympathetic reflex latencies and conduction velocities in patients with polyneuropathy. J Neurol Sci 1980; 47 ( 3 ): 449 – 461.; Cryer PE. Physiology and pathophysiology of the human sympathoadrenal neuroendocrine system. N Engl J Med 1980; 303 ( 8 ): 436 – 444.; Goldstein DS, Holmes C, Sharabi Y, Brentzel S, Eisenhofer G. Plasma levels of catechols and metanephrines in neurogenic orthostatic hypotension. Neurology 2003; 60 ( 8 ): 1327 – 1332.; Hilsted J. Catecholamines and diabetic autonomic neuropathy. Diabet Med 1995; 12 ( 4 ): 296 – 297.; Christensen NJ, Dejgaard A, Hilsted J. Plasma dihydroxyphenylglycol (DHPG) as an index of diabetic autonomic neuropathy. Clin Physiol 1988; 8 ( 6 ): 577 – 580.; Hilsted J, Parving HH, Christensen NJ, Benn J, Galbo H. Hemodynamics in diabetic orthostatic hypotension. J Clin Invest. 1981; 68 ( 6 ): 1427 – 1434.; Hilsted J, Galbo H, Christensen NJ. Impaired responses of catecholamines, growth hormone, and cortisol to graded exercise in diabetic autonomic neuropathy. Diabetes 1980; 29 ( 4 ): 257 – 262.; Bottini P, Tantucci C, Scionti L, et al. Cardiovascular response to exercise in diabetic patients: influence of autonomic neuropathy of different severity. Diabetologia 1995; 38 ( 2 ): 244 – 250.; Hepburn DA, MacLeod KM, Frier BM. Physiological, symptomatic and hormonal responses to acute hypoglycaemia in type 1 diabetic patients with autonomic neuropathy. Diabet Med 1993; 10 ( 10 ): 940 – 949.; Fanelli C, Pampanelli S, Lalli C, et al. Long‐term intensive therapy of IDDM patients with clinically overt autonomic neuropathy: effects on hypoglycemia awareness and counterregulation. Diabetes 1997; 46 ( 7 ): 1172 – 1181.; Dessein PH, Joffe BI, Metz RM, Millar DL, Lawson M, Stanwix AE. Autonomic dysfunction in systemic sclerosis: sympathetic overactivity and instability. Am J Med 1992; 93 ( 2 ): 143 – 150.; Vaz M, Kumar MV, Kulkarni RN, Rodrigues D, Shetty PS. Variability of cardiovascular and plasma noradrenaline responses to sustained isometric contraction in normal human subjects. Clin Sci (Lond) 1993; 85 ( 1 ): 45 – 49.; Stevens MJ, Raffel DM, Allman K, et al. Cardiac sympathetic dysinnervation in diabetes—an explanation for enhanced cardiovascular risk? Circulation 1998; 98: 961 – 968.; DeGrado TR, Hutchins GD, Toorongian SA, Wieland DM Schwaiger M. Myocardial kinetics of carbon‐11‐meta‐hydroxyephedrine (HED): retention mechanisms and effects of norepinephrine. J Nucl Med 1993; 34: 1287 – 1293.; Mantysaari M, Kuikka J, Mustonen J, et al. Measurement of myocardial accumulation of 123I‐metaiodobenzylguanidine for studying cardiac autonomic neuropathy in diabetes mellitus. Clin Autonom Res 1996; 6 ( 3 ): 163 – 169.; Allman KC, Stevens MJ, Wieland DM, et al. Noninvasive assessment of cardiac diabetic neuropathy by C‐11 hydroxyephedrine and positron emission tomography. J Am Coll Cardiol 1993; 22: 1425 – 1432.; Nagamachi S, Jinnouchi S, Kurose T, et al. 123I‐MIBG myocardial scintigraphy in diabetic patients: relationship with 201Tl uptake and cardiac autonomic function Ann Nucl Med 1998; 12 ( 6 ): 323 – 331.; Stevens MJ, Dayanikli F, Allman KC, et al. Scintigraphic assessment of regionalized defects in myocardial sympathetic innervation and blood flow regulation in diabetic patients with autonomic neuropathy. J Am Coll Cardiol 1998; 31: 1575 – 1584.; Sugiyama T, Kurata C, Tawarahara K, Nakano T. Is abnormal iodine‐123‐MIBG kinetics associated with left ventricular dysfunction in patients with diabetes mellitus? J Nucl Cardiol 2000; 7: 562 – 568.; Giordano A, Calcagni ML, Verrillo A, et al. Assessment of sympathetic innervation of the heart in diabetes mellitus using 123I‐MIBG. Metab Clin Exp 2000; 13 ( 6 ): 350 – 355.; Freeman MR, Newman D, Dorian P, Barr A, Langer A. Relation of direct assessment of cardiac autonomic function with metaiodobenzylguanidine imaging to heart rate variability in diabetes mellitus. Am J Cardiol 1987; 80 ( 2 ): 247 – 250.; Pop‐Busui R, Kirkwood I, Schmid H, et al. Sympathetic dysfunction in type 1 diabetes: association with impaired myocardial blood flow reserves and diastolic dysfunction. J Am Coll Cardiol 2004; 44: 2368 – 2374.; Stevens MJ, Raffel DM, Allman KC, Schwaiger M, Wieland DM. Regression and progression of cardiac sympathetic dysinnervation in diabetic patients with autonomic neuropathy. Metabolism 1999; 48: 92 – 101.; Schnell O, Muhr D, Weiss M, Dresel S, Haslbeck M, Standl E. Reduced myocardial 123 I‐metaiodo‐ benzylguanidine uptake in newly diagnosed IDDM patients. Diabetes 1996; 45: 801 – 805.; Ziegler D, Weise F, Langen K‐J, et al. Effect of glycemic control on myocardial sympathetic innervation assessed by [ 123 ]metaiodobenzylguanidine scintigraphy: a 4‐year prospective study in IDDM patients. Diabetologia 1998; 41: 443 – 451.

  5. 5
    دورية أكاديمية

    المصدر: Cardiovascular Research

    العلاقة: Bernardi, Luciano, Passino, Claudio, Robergs, Robert A., & Appenzeller, Otto (1997) Acute and persistent effects of a 46-kilometre wilderness trail run at altitude: Cardiovascular autonomic modulation and baroreflexes. Cardiovascular Research, 34(2), pp. 273-280.; https://eprints.qut.edu.au/96948Test/; Faculty of Health

  6. 6
    دورية أكاديمية
  7. 7
    دورية أكاديمية
  8. 8
    دورية أكاديمية
  9. 9
    دورية أكاديمية
  10. 10
    دورية أكاديمية