يعرض 1 - 5 نتائج من 5 نتيجة بحث عن '"Piera Smeriglio"', وقت الاستعلام: 1.55s تنقيح النتائج
  1. 1

    المصدر: Journal of Bone and Mineral Research. 31:524-534

    الوصف: Regulation of gene expression changes during chondrogenic differentiation by DNA methylation and demethylation is little understood. Methylated cytosines (5mC) are oxidized by the ten-eleven-translocation (TET) proteins to 5-hydroxymethylcytosines (5hmC), 5-formylcytosines (5fC), and 5-carboxylcytosines (5caC), eventually leading to a replacement by unmethylated cytosines (C), ie, DNA demethylation. Additionally, 5hmC is stable and acts as an epigenetic mark by itself. Here, we report that global changes in 5hmC mark chondrogenic differentiation in vivo and in vitro. Tibia anlagen and growth plate analyses during limb development at mouse embryonic days E 11.5, 13.5, and 17.5 showed dynamic changes in 5hmC levels in the differentiating chondrocytes. A similar increase in 5hmC levels was observed in the ATDC5 chondroprogenitor cell line accompanied by increased expression of the TET proteins during in vitro differentiation. Loss of TET1 in ATDC5 decreased 5hmC levels and impaired differentiation, demonstrating a functional role for TET1-mediated 5hmC dynamics in chondrogenic differentiation. Global analyses of the 5hmC-enriched sequences during early and late chondrogenic differentiation identified 5hmC distribution to be enriched in the regulatory regions of genes preceding the transcription start site (TSS), as well as in the gene bodies. Stable gains in 5hmC were observed in specific subsets of genes, including genes associated with cartilage development and in chondrogenic lineage-specific genes. 5hmC gains in regulatory promoter and enhancer regions as well as in gene bodies were strongly associated with activated but not repressed genes, indicating a potential regulatory role for DNA hydroxymethylation in chondrogenic gene expression.

  2. 2

    المصدر: Arthritis Research & Therapy

    الوصف: Background Diseases associated with human cartilage, including rheumatoid arthritis (RA) and osteoarthritis (OA) have manifested age, mechanical stresses and inflammation as the leading risk factors. Although inflammatory processes are known to be upregulated upon aging, we sought to gain a molecular understanding of how aging affects the tissue-specific response to inflammation. In this report, we explored the role of cluster of differentiation 24 (CD24) in regulating differential inflammatory responses in juvenile and adult human chondrocytes. Methods Differential cell-surface CD24 expression was assessed in juvenile and adult chondrocytes along with human induced pluripotent stem cell (hiPSC)-derived neonatal chondrocytes through gene expression and fluorescence-activated cell sorting (FACS) analyses. Loss of function of CD24 was achieved through silencing in chondrocytes and the effects on the response to inflammatory cues were assessed through gene expression and NFκB activity. Results CD24 expression in chondrocytes caused a differential response to cytokine-induced inflammation, with the CD24high juvenile chondrocytes being resistant to IL-1ß treatment as compared to CD24low adult chondrocytes. CD24 protects from inflammatory response by reducing NFκB activation, as an acute loss of CD24 via silencing led to an increase in NFκB activation. Moreover, the loss of CD24 in chondrocytes subsequently increased inflammatory and catabolic gene expression both in the absence and presence of IL-1ß. Conclusions We have identified CD24 as a novel regulator of inflammatory response in cartilage that is altered during development and aging and could potentially be therapeutic in RA and OA. Electronic supplementary material The online version of this article (doi:10.1186/s13075-016-1183-y) contains supplementary material, which is available to authorized users.

  3. 3

    المصدر: Arthritis & Rheumatology. 66:90-100

    الوصف: Objective To investigate the role of the newly discovered epigenetic mark 5-hydroxymethylcytosine (5hmC) and its regulators in altered gene expression in osteoarthritis (OA). Methods Cartilage was obtained from OA patients undergoing total knee arthroplasty and from control patients undergoing anterior cruciate ligament reconstruction. Global levels of 5hmC and 5-methylcytosine (5mC) were investigated using immunoblotting, enzyme-linked immunosorbent assays, and cellular staining. Gene expression changes were monitored by quantitative polymerase chain reaction (PCR) analysis. Levels of locus-specific 5hmC and 5mC at CpG sites in the matrix metalloproteinase 1 (MMP-1), MMP-3, ADAMTS-5, and hypoxanthine guanine phosphoribosyltransferase 1 (HPRT-1) promoters were quantified using a glucosylation and enzyme digestion–based method followed by quantitative PCR analysis. Global and locus-specific 5hmC levels and gene expression changes were monitored in normal chondrocytes stimulated with inflammatory cytokines to identify the effect of joint inflammation. Results A global 5–6-fold increase in 5hmC concomitant with a loss of TET1 was observed in human OA chondrocytes compared to normal chondrocytes. Enrichment of 5hmC was observed in promoters of enzymes critical to OA pathology, MMP-1 and MMP-3. Short-term treatment of normal chondrocytes with inflammatory cytokines induced a rapid decrease in TET1 expression but no global or locus-specific 5hmC enrichment. Conclusion This study provides the first evidence of an epigenetic imbalance of the 5hmC homeostasis in OA leading to TET1 down-regulation and 5hmC accumulation. Our experiments identify 5hmC and its regulators as potential diagnostic and therapeutic targets in OA.

  4. 4

    المساهمون: Unité de Recherche sur les Maladies Cardiovasculaires, du Métabolisme et de la Nutrition = Institute of cardiometabolism and nutrition (ICAN), Université Pierre et Marie Curie - Paris 6 (UPMC)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Institut National de la Santé et de la Recherche Médicale (INSERM)-CHU Pitié-Salpêtrière [AP-HP], Sorbonne Université (SU)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU), French Ministry of Research ``Chaired Excellence', Muscular Dystrophy Association of America, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Duchenne Parent Project (Amsterdam, The Netherlands), European Community [Health-F5-2009-223098], ENDOSTEM (Activation of Vasculature Associated Stem Cells for the Repair and Maintenance of Muscle Tissue) [241440], Agence Nationale de la Recherche (Laboratoire d'Excellence Revive, Investissement d'Avenir) [ANR-10-LABX-73], IHU-ICAN projects, Italian Ministry for University and Research, Sapienza University of Rome, French Association against Myopathies (AFM), Telethon Italy, Unité de Recherche sur les Maladies Cardiovasculaires, du Métabolisme et de la Nutrition = Research Unit on Cardiovascular and Metabolic Diseases (ICAN), Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Sorbonne Université (SU)-Sorbonne Université (SU)

    المصدر: FASEB Journal
    FASEB Journal, Federation of American Society of Experimental Biology, 2016, 30 (4), pp.1404-1415. ⟨10.1096/fj.15-275420⟩
    FASEB Journal, 2016, 30 (4), pp.1404-1415. ⟨10.1096/fj.15-275420⟩

    الوصف: International audience; Understanding the regulation of the stem cell fate is fundamental for designing novel regenerative medicine strategies. Previous studies have suggested that pharmacological treatments with small molecules provide a robust and reversible regulation of the stem cell program. Previously, we showed that treatment with a vanadium compound influences muscle cell fate in vitro. In this study, we demonstrate that treatment with the phosphotyrosine phosphatase inhibitor bisperoxovanadium (BpV) drives primary muscle cells to a poised stem cell stage, with enhanced function in muscle regeneration in vivo following transplantation into injured muscles. Importantly, BpV-treated cells displayed increased self-renewal potential in vivo and replenished the niche in both satellite and interstitial cell compartments. Moreover, we found that BpV treatment induces specific activating chromatin modifications at the promoter regions of genes associated with stem cell fate, including Sca-1 and Pw1. Thus, our findings indicate that BpV resets the cell fate program by specific epigenetic regulations, such that the committed myogenic cell fate is redirected to an earlier progenitor cell fate stage, which leads to an enhanced regenerative stem cell potential.-Smeriglio, P., Alonso-Martin, S., Masciarelli, S., Madaro, L., Iosue, I., Marrocco, V., Relaix, F., Fazi, F., Marazzi, G., Sassoon, D. A., Bouche, M. Phosphotyrosine phosphatase inhibitor bisperoxovanadium endows myogenic cells with enhanced muscle stem cell functions via epigenetic modulation of Sca-1 and Pw1 promoters. FASEB J. 30, 1404-1415 (2016). www.fasebj.org

  5. 5

    المصدر: Arthritisrheumatology (Hoboken, N.J.). 66(1)

    الوصف: To investigate the role of the newly discovered epigenetic mark 5-hydroxymethylcytosine (5hmC) and its regulators in altered gene expression in osteoarthritis (OA).Cartilage was obtained from OA patients undergoing total knee arthroplasty and from control patients undergoing anterior cruciate ligament reconstruction. Global levels of 5hmC and 5-methylcytosine (5mC) were investigated using immunoblotting, enzyme-linked immunosorbent assays, and cellular staining. Gene expression changes were monitored by quantitative polymerase chain reaction (PCR) analysis. Levels of locus-specific 5hmC and 5mC at CpG sites in the matrix metalloproteinase 1 (MMP-1), MMP-3, ADAMTS-5, and hypoxanthine guanine phosphoribosyltransferase 1 (HPRT-1) promoters were quantified using a glucosylation and enzyme digestion-based method followed by quantitative PCR analysis. Global and locus-specific 5hmC levels and gene expression changes were monitored in normal chondrocytes stimulated with inflammatory cytokines to identify the effect of joint inflammation.A global 5-6-fold increase in 5hmC concomitant with a loss of TET1 was observed in human OA chondrocytes compared to normal chondrocytes. Enrichment of 5hmC was observed in promoters of enzymes critical to OA pathology, MMP-1 and MMP-3. Short-term treatment of normal chondrocytes with inflammatory cytokines induced a rapid decrease in TET1 expression but no global or locus-specific 5hmC enrichment.This study provides the first evidence of an epigenetic imbalance of the 5hmC homeostasis in OA leading to TET1 down-regulation and 5hmC accumulation. Our experiments identify 5hmC and its regulators as potential diagnostic and therapeutic targets in OA.