A Peroxygenase fromChaetomium globosumCatalyzes the Selective Oxygenation of Testosterone

التفاصيل البيبلوغرافية
العنوان: A Peroxygenase fromChaetomium globosumCatalyzes the Selective Oxygenation of Testosterone
المؤلفون: Katrin Scheibner, Daniel Zänder, Jan Kiebist, René Ullrich, Kai-Uwe Schmidtke, Jörg Zimmermann, Nico Jehmlich, Martin Hofrichter, Harald Kellner
المصدر: Chembiochem
ChemBioChem
بيانات النشر: Wiley, 2017.
سنة النشر: 2017
مصطلحات موضوعية: 0301 basic medicine, Stereochemistry, Chemistry, Pharmaceutical, medicine.medical_treatment, peroxidase, Chaetomium, 01 natural sciences, Biochemistry, Catalysis, Mixed Function Oxygenases, hydroxylation, Steroid, oxyfunctionalization, Hydroxylation, 03 medical and health sciences, chemistry.chemical_compound, Unspecific peroxygenase, epoxidation, peroxidase, hydroxylation, epoxidation, steroid, oxyfunctionalization, TU Dresden, Publishing Fund, medicine, Organic chemistry, Testosterone, Amino Acid Sequence, Molecular Biology, Chromatography, High Pressure Liquid, Full Paper, biology, Chaetomium globosum, 010405 organic chemistry, Chemistry, Agrocybe, steroid, Organic Chemistry, Substrate (chemistry), Fast protein liquid chromatography, Full Papers, biology.organism_classification, 0104 chemical sciences, Turnover number, Oxygen, 030104 developmental biology, ddc:540, Peroxidase, Hydroxylierung, Epoxidierung, Steriod, Oxyfunktionalisierung, TU Dresden, Publikationsfonds, Molecular Medicine
الوصف: Unspecific peroxygenases (UPO, EC 1.11.2.1) secreted by fungi open an efficient way to selectively oxyfunctionalize diverse organic substrates, including less‐activated hydrocarbons, by transferring peroxide‐borne oxygen. We investigated a cell‐free approach to incorporate epoxy and hydroxyl functionalities directly into the bulky molecule testosterone by a novel unspecific peroxygenase (UPO) that is produced by the ascomycetous fungus Chaetomium globosum in a complex medium rich in carbon and nitrogen. Purification by fast protein liquid chromatography revealed two enzyme fractions with the same molecular mass (36 kDa) and with specific activity of 4.4 to 12 U mg−1. Although the well‐known UPOs of Agrocybe aegerita (AaeUPO) and Marasmius rotula (MroUPO) failed to convert testosterone in a comparative study, the UPO of C. globosum (CglUPO) accepted testosterone as substrate and converted it with total turnover number (TTN) of up to 7000 into two oxygenated products: the 4,5‐epoxide of testosterone in β‐configuration and 16α‐hydroxytestosterone. The reaction performed on a 100 mg scale resulted in the formation of about 90 % of the epoxide and 10 % of the hydroxylation product, both of which could be isolated with purities above 96 %. Thus, CglUPO is a promising biocatalyst for the oxyfunctionalization of bulky steroids and it will be a useful tool for the synthesis of pharmaceutically relevant steroidal molecules.
تدمد: 1439-4227
الوصول الحر: https://explore.openaire.eu/search/publication?articleId=doi_dedup___::51f949f8da3148155b8c55d633b23ab7Test
https://doi.org/10.1002/cbic.201600677Test
حقوق: OPEN
رقم الانضمام: edsair.doi.dedup.....51f949f8da3148155b8c55d633b23ab7
قاعدة البيانات: OpenAIRE